Future graduate students

Monday, June 20, 2022 1:00 pm - 1:00 pm EDT (GMT -04:00)

Fault-Tolerant Quantum Computing: A Commercial Perspective

IQC Alum Lecture Series: Ben Criger, Cambridge Quantum

The possibility for quantum computers to outcompete classical high-performance computers at their own game looms tantalizingly on the horizon. The main obstacle to performing large-scale computations remains the cascade of small inaccuracies on individual components throughout large quantum circuits. Since the 1990s, techniques have been invented for suppressing these errors, principally within academia.

Wednesday, June 1, 2022 12:00 pm - 12:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Andrew Cameron

Ultrafast single photon optical gating via the Kerr effect

In optical quantum communication and information protocols, it is important to have access to a high dimensional Hilbert space. The energy-time degree of freedom of photons may be used to access such a Hilbert space, as long as accurate measures of frequency and time of single photons are possible. With ultrafast timescales, it is known how to measure the phase of an electric field as a function of time, but new techniques are required for the low power, single photon regime.

Tuesday, May 17, 2022 2:00 pm - 2:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Kaveh Gharavi

From Andreev Bound States to Majorana Bound States: Experimental Signatures in Nanowire Devices

In the last decade, topological superconductors have enjoyed enormous interest due to their possible application in quantum computing, as well as the relative accessibility of recipes claiming to realize this novel form of matter without use of exotic materials.

Monday, May 9, 2022 10:00 am - 10:00 am EDT (GMT -04:00)

IQC Colloquium

Topological quantum codes and quantum computation

Aleksander Kubica, AWS Center for Quantum Computing & California Institute of Technology

Quantum computers are one of the central pillars of quantum information science. However, designing them is a daunting task that will require the implementation of fault-tolerant protocols and quantum error-correcting codes. In this talk, I will present a realistic and resource-efficient approach to building scalable quantum computers based on topological quantum codes.

Wednesday, May 11, 2022 11:00 am - 12:00 pm EDT (GMT -04:00)

NRC Applied Quantum Computing Challenge Overview

Phil Kaye, Program Director, Applied Quantum Computing Challenge program, National Research Council Canada

Event update: This event will be offered virtually. 

The National Research Council of Canada is developing a new challenge program for Applied Quantum Computing. Phil Kaye, Program Director, will provide an overview of the program and share more information about how to get involved.

Thursday, May 5, 2022 10:00 am - 10:00 am EDT (GMT -04:00)

IQC-QuICS Math and Computer Science Seminar

LDPC Quantum Codes: Recent Developments, Challenges and Opportunities

Nikolas Breuckmann, University College London

Quantum error correction is an indispensable ingredient for scalable quantum computing. We discuss a particular class of quantum codes called "quantum low-density parity-check (LDPC) codes." The codes we discuss are alternatives to the surface code, which is currently the leading candidate to implement quantum fault tolerance. We discuss the zoo of quantum LDPC codes and discuss their potential for making quantum computers robust with regard to noise.

Monday, May 2, 2022 10:00 am - 10:00 am EDT (GMT -04:00)

IQC Colloquium

The theory of quantum information: Channels, Capacities, and all that

Graeme Stewart Baird Smith, University of Colorado, Boulder

 Information theory offers mathematically precise theory of communication and data storage that guided and fueled the information age.  Initially, quantum effects were thought to be an annoying source of noise, but we have since learned that they offer new capabilities and vast opportunities. Quantum information theory seeks to identify, quantify, and ultimately harness these capabilities.

Thursday, May 5, 2022 10:00 am - 10:00 am EDT (GMT -04:00)

IQC Colloquium

Tensor Methods for Quantum Systems and Beyond

Edgar Solomonik, University of Illinois at Urbana-Champaign

Tensors are an effective numerical representation for both computation with and analysis of multidimensional datasets and operators. In this talk, we review and motivate how tensor rank, decompositions, and eigenvalues can be used for computational simulation and for hardness measures, such as bilinear complexity and quantum entanglement. We then survey algorithms for computing low-rank decompositions of tensors.

Thursday, April 28, 2022 10:00 am - 10:00 am EDT (GMT -04:00)

IQC Colloquium

From quantum circuit complexity to quantum information thermodynamics

Philippe Faist, Freie Universität Berlin

Quantifying quantum states' complexity is a key problem in various subfields of science, from quantum computing to black-hole physics. My talk will focus on two approaches to understand the behavior and the operational significance of quantum complexity in a many-body physical quantum system. First, I'll consider a simple model on n quantum bits: We create a random quantum circuit by randomly sampling the gates that compose it.

In Person & Virtual

In “Quantum Steampunk”, the exciting new book from Harvard physicist Dr. Nicole Yunger Halpern, the industrial revolution meets the quantum-technology revolution. While readers follow the adventures of a rag-tag steampunk crew on trains, dirigibles, and automobiles, they explore questions such as, “Can quantum physics revolutionize engines?” and “What deeper secrets can quantum information reveal about the trajectory of time?” Join Dr.