Future graduate students

Friday, November 2, 2018 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Topological cavity states in two-dimensional photonic/phononic chips

Jian-Hua Jiang, School of Physical Science and Technology, Soochow University

Topological insulators are electronic systems with an insulating bulk and topologically protected boundary states. Conventional 2D topological insulators induce 1D edge states. Recent studies indicate that lower-dimensional topological states are also possible in electronic systems, which, however, has been confirmed only in Bismuth in experiments [1].

Friday, October 19, 2018 12:30 pm - 12:30 pm EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

The study of high-efficiency magnetization reversal using spin-orbit coupling

Dongseuk Kim, Quantum Technology Institute, KRISS, South Korea

In recent years, the magnetic random-access memory (MRAM) have been attracting attention as a next generation memory device due to their fast switching speed and non-volatility characteristics. The biggest challenge for the switching device using a magnetic material is an easy magnetization reversal.

Thursday, October 11, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

Proposal for Quantum Simulation via All-Optically Generated Tensor Network States

Ish Dhand, University of Ulm

We devise an all-optical scheme for the generation of entangled multimode photonic states encoded in temporal modes of light. The scheme employs a nonlinear down-conversion process in an optical loop to generate one- and higher-dimensional tensor network states of light. We illustrate the principle with the generation of two different classes of entangled tensor network states and report on a variational algorithm to simulate the ground-state physics of many-body systems.

Tuesday, September 25, 2018 1:00 pm - 3:00 pm EDT (GMT -04:00)

Transformative Quantum Technologies Information Session

Transformative Quantum TechnologiesInterested in learning more about the Transformative Quantum Technologies (TQT) initiative? Attend the TQT information session from 1:00 – 3:00 PM in the RAC 2 Quiet Labs foyer. Please join us to learn about TQT’s program opportunities, latest research developments and future directions.

Friday, September 28, 2018 1:00 pm - 1:00 pm EDT (GMT -04:00)

New forms of matter with ultracold atoms: synthetic magnetic fields and supersolidity

Wolfgang Ketterle - MIT

The properties of ultracold atoms can be profoundly modified with the help of laser beams. They can modify the wavefunction of neutral atoms in such a way that they show behavior of charged particles, e.g. electrons in high magnetic fields. In this way, synthetic magnetic fields and spin-orbit coupling have been realized, and a supersolid phase has been observed. A supersolid is superfluid and breaks translational symmetry, i.e. it has shape.

Thursday, August 2, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

Quantum nondemolition measurement of mechanical motion quanta

Luca Dellantonio, University of Copenhagen, Denmark

The fields of opto- and electromechanics have facilitated numerous advances in the areas of precision measurement and sensing, ultimately driving the studies of mechanical systems into the quantum regime. To date, however, the quantization of the mechanical motion and the associated quantum jumps between phonon states remains elusive. For optomechanical systems, the coupling to the environment was shown to preclude the detection of the mechanical mode occupation, unless strong single photon optomechanical coupling is achieved.