Staff

Exploring how biological processes use quantum effects and developing new nanowire arrays to detect light at the single photon level are two of 10 projects being funded by more than $900,000 from the Quantum Quest Seed Fund.

The funding program, which will launch its third cycle in this spring, promotes the development of new ideas and applications for quantum devices.

Thursday, May 17, 2018 4:00 pm - 4:00 pm EDT (GMT -04:00)

Asymptotic limits in quantum frequency estimation

Jan Haase, Universität Ulm

Whenever one is tempted to employ a quantum system for any kind of applications, the focus usually lies on two properties setting it apart from a system described by a classical theory, namely the coherent superposition of different quantum states and entanglement between two ore more constituents forming the system.

Tuesday, April 24, 2018 1:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum Computing - Dissipative Quantum Search

PhD Seminar

Chunhao Wang, PhD candidate

David R. Cheriton School of Computer Science

We give a dissipative quantum search algorithm that is based on a novel dissipative query model. If there are $N$ items and $M$ of them are marked, this algorithm performs a fixed-point quantum search using $O(\sqrt{N/M}\log(1/\epsilon))$ queries with error bounded by $\epsilon$. In addition, we present a continuous-time version of this algorithm in terms of Lindblad evolution.

Tuesday, April 24, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

Quantum Computing - A Quantum Algorithm for Simulating Non-sparse Hamiltonians

PhD Seminar

Chunhao Wang, PhD candidate

David R. Cheriton School of Computer Science

We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the assumption that the entries of the Hamiltonian are stored in a data structure that allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve a poly-logarithmic dependence on the precision. 

Joshua Choi - University of Virginia

Metal halide perovskites (MHPs) are revolutionizing the solar cell research field - the record power conversion efficiency of MHPs based solar cells has reached 22.7%, which rivals that of silicon solar cells. What is particularly exciting about MHPs is that they can be manufactured into solar cell devices at low-costing using low temperature solution processing. Based on these attributes, MHPs have been called the “next big thing in photovoltaics” and worldwide research efforts have grown explosively.

Eric Bittner, University of Houston

Entangled photons offer an exquisite probe to correlated dynamics within a material system. In my talk I shall discuss some recent experiments and our theoretical investigations into developing an input/output scattering theory approach that connects an incoming photon Fock state to an outgoing Fock state, treating both the internal (material) and photon dynamics on a consistent footing. As proof of concept, we show how entangled photons can probe the inner workings of a model system undergoing spontaneous symmetry breaking.