Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Thursday, May 19, 2022 10:00 am - 10:00 am EDT (GMT -04:00)

IQC-QuICS Math and Computer Science Seminar

Dequantizing the Quantum Singular Value Transformation: Hardness and Applications to Quantum Chemistry and the Quantum PCP Conjecture

Sevag Gharibian, Paderborn University

The Quantum Singular Value Transformation (QSVT) is a recent technique that gives a unified framework to describe most quantum algorithms discovered so far, and may lead to the development of novel quantum algorithms. In this paper we investigate the hardness of classically simulating the QSVT.

Wednesday, June 1, 2022 12:00 pm - 12:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Andrew Cameron

Ultrafast single photon optical gating via the Kerr effect

In optical quantum communication and information protocols, it is important to have access to a high dimensional Hilbert space. The energy-time degree of freedom of photons may be used to access such a Hilbert space, as long as accurate measures of frequency and time of single photons are possible. With ultrafast timescales, it is known how to measure the phase of an electric field as a function of time, but new techniques are required for the low power, single photon regime.

Wednesday, June 8, 2022 12:00 pm - 12:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Arsalan Motamedi

Quantum Linear Solvers and Their Applications

I will talk about the quantum algorithms developed by block-encoding techniques for solving linear system of equations. We will see what sorts of speed-ups have been proved or could be expected, while exploiting a quantum linear solver as a subroutine, for tasks ranging from solving PDEs to sampling from Gibbs distributions.

Join the seminar on Zoom or in QNC 1201!
Meeting link: IQC Student Seminar

Monday, June 20, 2022 1:00 pm - 1:00 pm EDT (GMT -04:00)

Fault-Tolerant Quantum Computing: A Commercial Perspective

IQC Alum Lecture Series: Ben Criger, Cambridge Quantum

The possibility for quantum computers to outcompete classical high-performance computers at their own game looms tantalizingly on the horizon. The main obstacle to performing large-scale computations remains the cascade of small inaccuracies on individual components throughout large quantum circuits. Since the 1990s, techniques have been invented for suppressing these errors, principally within academia.

Tuesday, June 21, 2022 12:00 pm - 12:00 pm EDT (GMT -04:00)

Quantum Perspectives: Communication

Communication networks are an essential part of our world today, used in transactions from banking to education, global business exchanges to defence. What happens when our private information is no longer private? Powerful quantum computers will have the ability to crack the encryption of public keys that we currently use to secure our data, putting our privacy at risk.

Wednesday, June 22, 2022 12:00 pm - 12:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Shlok Nahar

Detector Imperfections in QKD

Very often, in theory, device and implementation imperfections are assumed to be ideal to make the theory simpler. However, before we can practically use these devices, these assumptions must either be removed or justified. I will talk about some techniques to rigorously deal with imperfect detectors within the context of QKD.

Thursday, June 23, 2022 2:30 pm - 2:30 pm EDT (GMT -04:00)

POSTPONED – Evolutions through Graduate School and Hamiltonians

IQC Alum Lecture Series: Galit Anikeeva, Massachusetts Institute of Technology

POSTPONED UNTIL FURTHER NOTICE

The Institute for Quantum Computing (IQC) alum Galit Anikeeva will talk about her research since IQC, at Stanford, MIT, and beyond - at first focusing on quantum error correction, and then most recently on tentative connections between chaos and Hamiltonian simulation. She will also highlight how lessons from her time at IQC have shaped her path through undergraduate research and into graduate school, especially welcoming questions from younger students. 

Thursday, June 23, 2022 3:30 pm - 3:30 pm EDT (GMT -04:00)

Approximating Algorithms for 2-Local Hamiltonian

Ojas Parekh, Sandia National Laboratories

Quantum Max Cut (QMC) is a QMA-hard instance of 2-Local Hamiltonian (2-LH) that is closely related to the well-studied antiferromagnetic Heisenberg model (AFHM). Finding maximal energy states of QMC is equivalent to finding ground states of AFHM; however, the approximability of the former is related to the classical Max Cut problem.