David Jao: Constructing Elliptic Curve Isogenies in Quantum Subexponential Time
Given two elliptic curves over a finite field having the same cardinality and endomorphism ring, it is known that the curves admit an isogeny (a.k.a. algebraic map) between them, but finding such an isogeny is believed to be computationally difficult. The fastest known classical algorithm for this problem requires exponential time, and prior to our work no faster quantum algorithm was known. We show that this problem can be solved in subexponential time on a quantum computer, assuming the