Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Friday, February 22, 2019 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

APS March Meeting Student Practice Talk Session

Silicon MOSFET quantum dots with simplified metal-gate geometry

Eduardo Barrera

Silicon (Si) CMOS spin qubits have become a promising platform for a future quantum information processor due to recent demonstrations of high fidelity single and two qubit gates [Veldhorst et. al., Nature 526.7573 (2015)], compatibility with industrial CMOS process and promising prospects for scalability.

Tuesday, February 26, 2019 1:30 pm - 1:30 pm EST (GMT -05:00)

Ultracold Molecules: From Quantum Chemistry to Quantum Computing

Alan Jamison, Massachusetts Institute of Technology (MIT)

Cooling atomic gases to quantum degeneracy opened the new field of quantum simulation. Here the precise tools of atomic physics can be used to study exotic models from condensed matter or nuclear physics with unique tunability and control. Ultracold molecules bring many new possibilities to quantum simulation. I will review the physics of ultracold molecules, including our recent production of stable, ultracold triplet molecules and what they can add to quantum simulation.

Friday, March 8, 2019 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Crafting high-dimensional tools for photonic quantum networks with tailored nonlinear optics

John Donohue, Institute for Quantum Computing

The time-frequency degree of freedom of light offers an intrinsically high-dimensional encoding space which is naturally compatible with waveguide devices and fiber infrastructure. However, coherent manipulation and measurement the information-carrying modes presents a challenge due to the sub-picosecond timescales inherent to downconversion-based photon sources. In this talk, I will discuss methods based on ultrafast pulse shaping and sum-frequency generation to address these temporal modes.

Friday, March 22, 2019 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

An introduction to making scientific figures with Illustrator and Blender

Special guest speaker: Christopher Gutierrez, University of British Columbia

Scientific research can be a slow and laborious process. The absolutely final step in the process is to then communicate your exciting scientific findings to other scientists both in and outside of your field. Yet it is often at this final step where the least amount of time is spent.

Thursday, March 28, 2019 4:00 pm - 4:00 pm EDT (GMT -04:00)

Real algebra, random walks, and information theory

Tobias Fritz, Perimeter Institute

Similar to how commutative algebra studies rings and their ideals, the protagonists of real algebra are ordered rings. Their interplay between algebra and geometry is studied in terms of Positivstellen- stze, real analogs of the Nullstellensatz, which go back to Artin's solution of Hilbert's 17th problem. I will describe some of the state of the art in this eld, and then introduce a new Positivstellensatz which unies and generalizes several of the existing ones.

Friday, April 5, 2019 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Journal club presentation:

"Experimental superposition of orders of quantum gates" by Procopio et. al.

(Nature Comms 6, 7913 (2015)

Arash Ahmadi, Institute for Quantum Computing

Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations’.

Monday, April 8, 2019 2:30 pm - 2:30 pm EDT (GMT -04:00)

Custom low-dimensional material systems explored at the atomic scale

Adina Luican-Mayer, University of Ottawa

Innovative technologies have a history of capitalizing on the discovery of new physical phenomena, often at the confluence of advances in material characterization techniques and innovations in design and controlled synthesis of high-quality materials. Pioneered by the discovery of graphene, atomically thin materials (2D materials) hold the promise for realizing physical systems with distinct properties, previously inaccessible.

Monday, April 15, 2019 2:30 pm - 2:30 pm EDT (GMT -04:00)

Quantum steampunk: Quantum information meets thermodynamics

Nicole Yunger Halpern, Harvard University Department of Physics

Thermodynamics has shed light on engines, efficiency, and time’s arrow since the Industrial Revolution. But the steam engines that powered the Industrial Revolution were large and classical. Much of today’s technology and experiments are small-scale, quantum, and out-of-equilibrium. Nineteenth-century thermodynamics requires updating for the 21st century. Guidance has come from the mathematical toolkit of quantum information theory.

Friday, April 26, 2019 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

A polar decomposition for quantum channels: insightful tools to navigate through noisy quantum circuits

Arnaud Carignan-Dugas, Institute for Quantum Computing

Inevitably, assessing the overall performance of a quantum computer must rely on characterizing some of its elementary constituents and, from this information, formulate a broader statement concerning more complex constructions thereof.

Tuesday, May 7, 2019 7:00 pm - 7:00 pm EDT (GMT -04:00)

Entangled: The Series - QUANTUM + Pop Culture

“Quantum physics” has taken its position with “rocket science” in pop culture as a shorthand for frighteningly complicated science. Quantum physics has also taken on a sort of magical connotation in fiction, with features like entanglement, superposition, and tunneling, spurring imagination. But where does the science draw the line? How much is joyful speculation, and how much is disregard for reality? And if it’s always seen as either magical or scary, how does that affect the perception of quantum science?