Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, September 25, 2017 11:00 am - 11:00 am EDT (GMT -04:00)

Seminar: Aging and Domain Growth in the Spin Glass Copper Manganese

Daniel Tennant - University of Texas, Austin

I will report on dynamical magnetic susceptibility measurements of
both bulk and thin film samples of the spin glass Copper Manganese.
By studying the Thermoremanent Magnetization (TRM) of multi-layer thin
films of various thicknesses, we are able to show the maximum energy
barrier encountered during correlated spin flip transitions is cut off
by the thickness of the film and is independent of temperature. The
distribution of energy barriers is shown to follow from a hierarchical

Tuesday, September 26, 2017 3:00 pm - 3:00 pm EDT (GMT -04:00)

Materials in 2-dimension and beyond: platform for novel electronics and optoelectronics

WIN/IQC Joint Distinguished Lecture

Philip KimPhilip Kim is an experimental condensed matter physicist. The focus of Kim’s group’s research is the mesoscopic investigation of various physical phenomena in low dimensional and nanostructured materials.

Thursday, September 28, 2017 1:00 pm - 1:00 pm EDT (GMT -04:00)

Application of a resource theory for magic states to fault-tolerant quantum computing

Mark Howard & Earl T. Campbell

Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. We first show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states.

Wednesday, October 11, 2017 1:00 pm - 1:00 pm EDT (GMT -04:00)

Toward the first quantum simulation with quantum speedup

Neil Julien Ross, Dalhousie University

As we approach the development of a quantum computer with tens of
well-controlled qubits, it is natural to ask what can be done with
such a device. Specifically, we would like to construct an example of
a practical problem that is beyond the reach of classical computers,
but that requires the fewest possible resources to solve on a quantum
computer. We address this problem by considering quantum simulation of
spin systems, a task that could be applied to understand phenomena in

Monday, October 16, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Search for a toric code topological order in the kagome antiferromagnet

Jiawei Mei - Southern University of Science and Technology, China

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It also represents the simplest example of topological order -- Z2 topological order that was first studied in the context of Z2 spin liquid. I will talk about our recent progress in the search for a toric code topological order in the kagome antiferromagnetic spin system.