Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Thursday, May 23, 2019 12:00 pm - 1:30 pm EDT (GMT -04:00)

A Case Study in Patent Development: Quantum Random Number Generator

This presentation will delve into a practical example of a patent procedure associated to a specific quantum technology: quantum random number generator. We will explore the specifics of the technology and its applications, review previously existing approaches and define the inventive step, explore the phrasing of the claims, and revisit the prior patents from the freedom-to-operate point of view.

Friday, May 24, 2019 10:30 am - 10:30 am EDT (GMT -04:00)

PhD Thesis Seminar - Quantum XOR games and Connes' embedding problem

Sam Harris, IQC/Department of Pure Mathematics

Last time we looked at unitary correlation sets, and obtained an analogue of Tsirelson's problem that is equivalent to the original one. In this talk, we'll see how unitary correlations can be thought of as strategies for a certain class of two-player (extended) non-local games, called quantum XOR games. Moreover, we'll see that Connes' embedding problem is equivalent to determining whether every quantum XOR game has the same winning probability in the commuting model as in the approximate finite-dimensional model.

Friday, May 24, 2019 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Carbon Based Flexible and Multi-Component Self-Powered Devices

Dogan Sinar

Carbon and its allotropes have been researched intensively for their potential applications in various fields including energy storage/generation, sensor technology, and wearable electronics. Graphene and graphene oxide have especially drawn attention during the last decade due their unique electrical, chemical, and mechanical properties.

Monday, May 27, 2019 12:00 am - Friday, June 7, 2019 12:00 am EDT (GMT -04:00)

Undergraduate School on Experimental Quantum Information Processing

Join us at the Institute for Quantum Computing for a two-week introduction to the theoretical and experimental study of quantum information processing.

During the Undergraduate School on Experimental Quantum Information Processing (USEQIP) will be exposed to lectures and experiments on the following topics and more.

Monday, May 27, 2019 2:00 pm - 2:00 pm EDT (GMT -04:00)

A rare-earth ensemble quantum memory for scalable quantum computing

Byoung Ham, Gwangju Institute of Science and Technology

Quantum coherence control in an inhomogeneously broadened lambda-type solid state ensemble has been studied for quantum memories over decades. Unlike akali atoms, the optically excited spin coherence in a rare-earth doped solid is sufferred from a serious spin dephasing problem due to spin inhomogeneity. Thus, solid state quantum memory protocols such as AFC and gradient echo have been effctively demonstrated only for optical transitions, whose coherence time is far shorter than ms.

Thursday, May 30, 2019 12:00 pm - 1:30 pm EDT (GMT -04:00)

Funding the Quantum Enterprise: Canadian Non-equity Sources

The event will feature a panel of four speakers who will share how their agency or organization supports start-ups and commercialization of IP, including funding sources and services available to faculty and start-ups. Each panelist will provide a brief presentation and respond to a set of questions followed by a Q&A session. Informal networking will take place between 1:00pm and 1:30pm.


Moderator:

Tarra Weber

Monday, June 10, 2019 2:30 pm - 2:30 pm EDT (GMT -04:00)

IQC Colloquium - Quantum Memories and Schrödinger’s Cat

IQC Colloquium

Stephen Bartlett, The University of Sydney

Quantum information is very fragile, but clever quantum engineers aspire to use error correction to keep information intact. Topologically ordered phases—wherein the most exotic properties of quantum physics such as entanglement are protected within a strongly-interacting material—are currently being commandeered as quantum error-correcting codes for today’s quantum architectures. I’ll introduce these as well as a new generation of theoretical materials that promise to self-correct themselves.