Material-Enabled Technologies for Soft and Fluidic Robots
The Waterloo Institute for Nanotechnology (WIN) is pleased to present a seminar with Daniel J. Preston, Assistant Professor in the Mechanical Engineering Department at Rice University, Houston, TX, USA.
This seminar is titled "Material-Enabled Technologies for Soft and Fluidic Robots" and will be held on Friday, September 15, 2023 at 2:00 PM in QNC 1501. Registration is required!
Abstract
The emerging field of soft robotics, which incorporates unconventional or compliant materials in autonomous systems, has simultaneously reshaped traditional robotics applications and introduced new use cases for robots. However, many useful classes of materials remain relatively unexplored, and furthermore, the vast majority of soft robotics research has targeted actuation and sensing, with power and control schemes still relying on bulky, rigid electronic components. My research program addresses open questions in these domains by applying our expertise in energy, fluids, and materials. For instance, biotic materials—non-living materials derived from living organisms—have remained underutilized in robotics, despite having played a role in human development since the times our early ancestors wore animal hides as clothing and used bones for tools. In the first part of my talk, I describe how we repurposed an inanimate spider as a ready-to-use actuator requiring only a single fabrication step, initiating the area of “necrobotics” in which biotic materials are used as robotic components. The second part of my talk focuses on assistive wearable robots, which currently rely on bulky and hard control systems and power supplies, or alternatively require cumbersome tethers to external infrastructure. To address this limitation, my group has developed completely soft fluidic digital logic components fabricated entirely from textiles. Our fluidic logic platform enables integrated memory, decision-making, and the ability to interact with and adapt to stimuli and the environment, all without the use of rigid valves or electronics. Meanwhile, we address limitations in power delivery by developing “self-powered” textile-based wearable robots that harvest energy from the motion of the human body. The integration of fluidic logic and energy harvesting in textile architectures represents an important step toward fully soft, self-sufficient wearable robots that are as comfortable, resilient, and practical as everyday clothing.
Biography