Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win-office@uwaterloo.ca
The Waterloo Institute for Nanotechnology (WIN) presents a seminar by Dr. Govind V. Kaigala, from IBM Research – Zurich, Switzerland
Abstract
In contrast to standard microfluidics, which are typically closed, we are developing a scanning, non-contact microfluidic technology that can shape liquids in the "open space" over surfaces. This technology utilizes a microfluidic probe (MFP) having microfabricated structures for localizing a liquid of interest on a surface using hydrodynamic flow confinement. MFP permits patterning surfaces with proteins and other biomolecules in an additive and subtractive manner, forming gradients on surfaces, and interacting with cells on surfaces. With flow confinement operating at volumes smaller than 1 nanoliter, a few cells can be targeted in a human tissue section for the specific staining of disease markers. Flow confinement and efficient use of chemicals can be further optimized using a concept called "hierarchical" hydrodynamic flow confinement. I will show how this family of liquid scanning probe devices is evolving as a bioanalytical tool in order to alter the physics and chemistry of biological interfaces at the micrometer to centimeter-length scales. I will also propose concepts pertaining to tissue microprocessing, cell microtechnology and spatially resolved molecular profiling may contribute to the multi-modal analysis of critical samples in the context of pathology and cell biology.
Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win-office@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.