Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win@uwaterloo.ca
Visit our COVID-19 information website to learn how Warriors protect Warriors.
Visit the University's Coronavirus Information website for more information.
The Waterloo Institute for Nanotechnology main office (QNC 3606) is closed until further notice. If you are a student trying to pick up or return a lab/office key, please email asomel@uwaterloo.ca for assistance. All other inquires can be directed to win-office@uwaterloo.ca. For emergencies, contact Campus Police.
Research interests: experimental condensed matter physics, x-ray scattering and x-ray spectroscopy, superconductivity, resonant soft x-ray scattering, quantum materials
The Quantum Materials Spectroscopy group, led by Professor Hawthorn, studies Quantum Materials using resonant soft x-ray scattering and x-ray absorption spectroscopy at synchrotrons such as the Canadian Light Source. We use these tools to investigate intertwinned order in Quantum Materials and shed light on the long-standing mysteries of high temperature superconductors.
PhD Physics, University of Toronto, ON, 2004
MSc Physics, University of Toronto, ON, 2000
BSc Physics, McMaster University, ON, 1999
A grand challenge in condensed matter physics is to identify the fundamental limit for achieving superconductivity at elevated temperatures.Meeting this challenge promises to guide the design of materials where the superconducting transition temperature can reach room temperature, harboring a wealth of transformative technological breakthroughs. The most promising materials for high temperature superconductivity are the cuprate superconductors. These materials have been studied intensively for nearly 30 years. Yet, only recently has it been recognized that superconductivity co-exists with a competing phase of matter, charge-density wave (CDW) order, which has now been shown to be generic to all the cuprates. 1
Measurements by our group on a low disorder sample of YBCO confirmed the origin of the density wave order in CuO2 planes of the cuprates, clarified its relation to the crystal structure and elucidated the microscopic character of the CDW order as arising from a spatial modulation in the energy levels of localized electronic states.2 This latter result followed directly from our group’s previous work on stripe-ordered La-based cuprates, where a similar energy modulation was identified.3 Since then, we have extended these studies to investigate the role of atomic random disorder on CDW order in the cuprates.4We showed that disorder decreases the CDW intensity but, most unexpectedly, has no effect on the correlation length or temperature dependence of CDW order.
Our most recent and possibly most significant studies investigated the symmetry of CDW order in La2-xBaxCuO4 and YBCO 5 and electronic nematicity in cuprates6.
To drive discoveries in the spectroscopy of quantum materials, our group has endeavored sdevelop a world-class endstation for resonant elastic soft x-ray scattering at the Canadian Light Source synchrotron in Saskatoon (the REIXS beamline).7 This includes a custom 4-circle UHV diffractometer, a molecular beam epitaxy (MBE) chamber for in-situ sample growth, and a multi-technique sample analysis chamber for photoelectron spectroscopy and UHV atomic force/scanning tunnelling microscopy.
Recent publications include:
Please see David Hawthorn's Google Scholar profile for a current list of his peer-reviewed articles.
Office: PHY 359; Lab: PHY 113, 114
Phone: 519.888.4567 x38589
Email: dhawthor@uwaterloo.ca
Website: David Hawthorn
Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office.