Linda Nazar

Next Generation Energy Systems Leader; Professor, Chemistry; Canada Research Chair in Solid State Materials

Research interests: nano-materials for the design of rechargeable lithium-ion batteries


Biography

Professor Linda Nazar is a faculty member of the Department of Chemistry at the University of Waterloo, and is cross appointed to the Department of Electrical Engineering. Nazar, holder of a Tier 1 Canada Research Chair in Solid State Energy Materials since 2004, has focused her research on developing new materials for energy storage and conversion for the past 20 years. She has published well over 300 papers, review articles and patents in the field.

Education

  • PhD, Chemistry, University of Toronto
  • BSc, University of British Columbia

Awards and Honours

Year Awards and Honours
2015 Appointed Officer of the Order of Canada
2014 Thomson Reuters Highly Cited Researcher
2013 August Wilhelm von Hofmann Lecture at the Science Forum Chemistry of the German Chemical Society (German Wissenschaftsforum)
2011 Elected Fellow of the Royal Society of Canada (FRSC)
2011 Distinguished Woman in Chemistry or Chemical Engineering (American Chemical Society Award)
2011 Distinguished Lecturer, Lawrence Berkeley National Laboratory
2011 Rio Tinto Alcan Award of the Canadian Society for Chemistry
2010 Moore Distinguished Scholar (California Institute of Technology)
2009 Electrochemical Society Battery Research Award

Research

Professor Linda Nazar’s research focuses on developing new materials that can store and deliver energy at a high rate. In light of the growing challenges we face this century that include declining oil production, and the realization that we live in a carbon constrained world, alternative energy solutions to petrol must be sought. Nazar’s work encompasses hydrogen storage and fuel cell catalyst materials, but her focus is on energy storage materials for rechargeable batteries. New-generation electrode materials could enable their implementation in plug-in hybrid electric vehicles. They are also absolutely vital as reservoirs (ie load-levellers) for intermittent energy sources such as solar and wind power. Although lithium-ion batteries are the state-of-the-art rechargeable power source which has achieved outstanding technological success for portable electronics, if such large-scale systems are to be realized then fundamental innovation in materials is essential.

Nazar's research program encompasses complex material synthesis, physical/structural characterization, electrochemical testing and electrode design. Promising new directions particularly lie in nanomaterials. They offer the possibility of moving into the realm of high-capacity systems that operate on the basis of intimate contact of the redox active components. The research employs a range of physical chemistry techniques, including ex-situ and in-situ studies involving X-ray/neutron diffraction, Raman microprobe and NMR spectroscopies, combined with fundamental electrochemical studies used to examine the underlying processes in solids.

Research interests

  • Design of nanomaterials for energy storage, conversion and delivery applications

  • Materials solid state chemistry and nanotechnology

  • Li-ion and lithium batteries; fuel cells; supercapacitors; hydrogen storage materials

  • Fundamental solid state chemistry & structure-property relationships

  • Mesoporous and nanoporous materials

Publications

Recent publications include:

  • T. Song, H. Cheng, K. Town, H. Park, R.W. Black, S. Lee, W.I. Park, Y. Huang, J.A. Rogers, L.F. Nazar, U. Paik. Electrochemical Properties of Si-Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Adv. Funct. Mater. 24(10), 1458-1464 (2014).

  • G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, and L.F. Nazar. Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes. ACS Nano, 7(12), 10920-10930 (2013).

  • H.W. Park, D.U. Lee, Y. Liua, J. Wua, L.F. Nazar and Z. Chen. Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications. J. Electrochem. Soc., 160, A2244-A2250 (2013).

  • M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, and L.F. Nazar. Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. J. Phys. Chem. Lett., 4, 3227-3232 (2013). 

  • D.U. Lee, H.W. Park, D. Higgins, L. Nazar and Z. Chen. Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material. J. Electrochem. Soc. 160 (9) F910-F915 (2013).

  • R. Tripathi, S.M. Wood, M.S. Islam and L.F. Nazar. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4Energy Environ. Sci., 6, 2257-2264 (2013). 

  • B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib and L.F. Nazar. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci., 6, 1772-1778 (2013). 

  • M. Mazloumi, S. Shadmehr, Y. Rangom, L.F. Nazar, and X. Tang. Fabrication of Three-Dimensional Carbon Nanotube and Metal Oxide Hybrid Mesoporous Architectures. ACS Nano, 7 (5), 4281-4288 (2013). 

  • G. He, G. Popov, and L.F. Nazar. Hydrothermal Synthesis and Electrochemical Properties of Li2CoSiO4/C Nanospheres. Chem. Mater., 25 (7), 1024-1031 (2013). 

  • K.-H. Ha, S.H. Woo, D. Mok, N.-S. Choi, Y. Park, S.M. Oh, Y. Kim, J. Kim, J. Lee, L.F. Nazar, K.T. Lee. Na4-αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na-ion Batteries. Adv. Energy Mater., 3, 770-776 (2013). 

  • R. Tripathi, G. Popov, X. Sun, D.H. Ryan and L.F. Nazar. Ultra-rapid microwave synthesis of triplite LiFeSO4F. J. Mater. Chem. A, 1, 2990-2994 (2013). 

  • H.W. Park, D.U. Lee, L.F. Nazar and Z.W. Chen. Oxygen Reduction Reaction Using MnO2Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O2 Battery Applications. J. Electrochem. Soc., 160 (2), A344-A350 (2013).

  • R. Black, J.-H. Lee, B. Adams, C.A. Mims, L.F. Nazar. The Role of Catalysts and Peroxide Oxidation in Lithium–Oxygen Batteries. Angew. Chem. Int. Ed., 52, 392-396 (2013). 

  • S. Evers and L.F. Nazar. New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes.Acc. Chem. Res., 46 (5), 1135-1143 (2013).

  • B.L. Ellis, K. Town and L.F. Nazar. New composite materials for lithium-ion batteries. Electrochimica Acta, 84, 145-154 (2012).

  • K.T. Lee, R. Black, T. Yim, X. Ji, and L.F. Nazar. Surface-Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery Cathodes. Adv. Energy Mater., 2 (12), 1490-1496 (2012).

  • S.H. Oh, R. Black, E. Pomerantseva, J.-H. Lee and L.F. Nazar. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nature Chemistry, 4, 1004-1010 (2012).

  • S. Evers, T. Yim, and L.F. Nazar. Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery. J. Phys. Chem. C, 116(37), 19653-19658 (2012). 

  • J.-H. Lee, R. Black, G. Popov, E. Pomerantseva, F. Nan, G.A. Botton and L.F. Nazar. The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium-oxygen batteries. Energy Environ. Sci., 5, 9558-9565 (2012). 

  • N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, Jaephil Cho, and P.G. Bruce. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed., 51, 9994-10024 (2012).

  • B.L. Ellis and L.F. Nazar. Reply to Comment on “Positive Electrode Materials for Li-Ion and Li-Batteries”.Chem. Mater., 24, 2244-2245 (2012).

  • S.H. Oh, L.F. Nazar. Oxide Catalysts for Rechargeable High-Capacity Li-O2 Batteries. Adv. Energy Mater., 2, 903-910 (2012).

  • R. Black, B. Adams, and L.F. Nazar. Non-Aqueous and Hybrid Li-O2 Batteries. Adv. Energy Mater., 2, 801-815 (2012).

  • B.L. Ellis, and L.F. Nazar. Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 16, 168-177 (2012).

  • A. Kim, R. Black, Y.J. Hyun, L.F. Nazar and E. Prouzet. Synthesis of monolithic meso–macroporous silica and carbon with tunable pore size. Chem. Commun., 48, 4335-4337 (2012). 

  • B.L. Ellis, and L.F. Nazar. Anion-Induced Solid Solution Electrochemical Behavior in Iron Tavorite Phosphates. Chem. Mater., 24(6), 966–968 (2012). 

  • J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, and L.F. Nazar. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angew. Chem. Int. Ed., 51, 3591-3595 (2012).

  • R. Black, S.H. Oh, J.-H. Lee. T. Yim, B. Adams, and L.F. Nazar. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc., 134, 2902-2905 (2012).

  • B.L. Ellis, T.N. Ramesh, W.N. Rowan-Weetaluktuk, D.H. Ryan and L.F. Nazar. Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J. Mater. Chem., 22, 4759-4766 (2012).

  • R. Tripathi, G. Popov, B.L. Ellis and L.F. Nazar. Lithium Metal Fluorosulfate Polymorphs as Positive Electrodes for Li-ion Batteries: Synthesis Strategies and Effect of Cation Ordering. Energy Environ. Sci.5 (3), 6238-6246 (2012). 

  • S. Evers and L.F. Nazar. Graphene-Enveloped Sulfur in a One Pot Reaction: a Cathode with Good Coulombic Efficiency and High Practical Sulfur Content. Chem. Commun., 48 (9), 1233-1235 (2012).

  • B. Ellis, T.N. Ramesh, L.J.M. Davis, G. Goward, and L.F. Nazar. Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure. Chem. Mater., 23 (23), 5138-5148 (2011).

  • H. Han, T. Song, J.Y. Bae, L.F. Nazar, H. Kim and U. Paik. Nitridated TiO2 Hollow Nanofibers as an Anode Material for High Power Lithium Ion Batteries. Energy Environ. Sci., 4 (11), 4532-4536 (2011).

  • S.H. Oh, T.E. Yim, E. Pomerantseva and L.F. Nazar. Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell. Electrochem. Solid-State Lett., 14 (12), A185-A188 (2011).

  • L.J.M. Davis, B.L. Ellis, T.N. Ramesh, L.F. Nazar, A.D. Bain and G.R. Goward. 6Li 1D EXSY NMR Spectroscopy: A New Tool for Studying Lithium Dynamics in Paramagnetic Materials Applied to Monoclinic Li2VPO4F. J. Phys Chem. C, 115 (45), 22603-22608 (2011).

  • K.T. Lee, T.N. Ramesh, F. Nan, G. Botton and L.F. Nazar. Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries. Chem. Mater., 23 (16), 3593-3600 (2011).

  • G. He, X. Ji and L.F. Nazar. High "C" Rate Li-S Cathodes: Sulphur Imbibed Bimodal Porous Carbons.Energy and Environ. Sci., 4, 2878-2883 (2011).

  • R. Tripathi, G.R. Gardiner, M.S. Islam and L.F. Nazar. Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials. Chem. Mater., 23 (8), 2278-2284 (2011).

  • S.-P. Badi, M. Wagemaker, B.L. Ellis, D.P. Singh, W.J.H. Borghols, W.H. Kan, D.H. Ryan, F.M. Mulder and L.F. Nazar. Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation. J. Mater. Chem., 21, 10085-10093 (2011).  Themed Issue on Advanced Battery Materials.

  • X. Ji, S. Evers, R. Black, and L.F. Nazar. Stabilizing Lithium-Sulphur Cathodes Using Polysulphide Reservoirs. Nature Comm., 2, 325-331 (2011).

  • G. He, J. Herbst, T.N. Ramesh, F.E. Pinkerton, M.S. Meyer and L.F. Nazar. Investigation of Hydrogen Absorption in Li7MnN4 and Li7VN4Phys. Chem. Chem. Phys., 13, 8889-8893 (2011).

  • D.R. Rolison and L.F. Nazar. Electrochemical energy storage to power the 21st century. MRS Bulletin, 36, 486 (2011).

  • L.J.M. Davis, I. Heinmaa, B.L. Ellis, L.F. Nazar and G.R. Goward. Influence of particle size on solid solution formation and phase interfaces in Li0.5FePOrevealed by 31P and 7Li solid state NMR spectroscopy. Phys. Chem. Chem. Phys., 13 (11), 5171-5177 (2011).

  • R. Tripathi, T.N. Ramesh, B. Ellis and L.F. Nazar. Scalable Synthesis of Tavorite LiFeSO4F and NaFeSO4F Cathode Materials. Angew. Chem. Int. Ed, 49 (46), 8738-8742 (2010).

  • L.S. Cahill, Y. Iriyama, L.F. Nazar, and G.R. Goward. Synthesis of Li4V(PO4)2F2 and 6,7Li NMR studies of its lithium ion dynamics. J. Mater. Chem., 20 (21), 4340-4346 (2010).

  • H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar, and J. Cho. Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries. Adv. Funct. Mater., 20 (22), 3818-3834 (2010).

  • S.H. Oh and L.F. Nazar. Direct synthesis of electroactive mesoporous hydrous crystalline RuO2templated by a cationic surfactant. J. Mater. Chem., 20 (19), 3834-3839 (2010).

  • X. Ji, S. Evers, K.T. Lee  and L.F. Nazar. Agitation induced loading of sulfur into carbon CMK-3 nanotubes: efficient scavenging of noble metals from aqueous solution. Chem. Commun., 46, 1658-1660 (2010).

  • T.N. Ramesh, K.T. Lee, B.L. Ellis, and L. F. Nazar. Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO4F-Li2FePO4F. Electrochemical and Solid-State Letters, 13 (4) A43-A47 (2010).

  • X. Ji and L.F. Nazar. Advances in Li-S batteries. J. Mater. Chem., 20 (44), 9821-9826 (2010).

  • B.L. Ellis, W.R.M. Makahnouk, W.N. Rowan-Weetaluktuk, D.H. Ryan, and L.F. Nazar. Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem. Mater., 22, 1059-1070 (2010).

  • B.L. Ellis, K.T. Lee, and L.F. Nazar. Positive Electrode Materials for Li-Ion and Li-Batteries. Chem. Mater., 22, 691-714 (2010).

  • X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, G.A. Botton, M. Couillard and L.F. Nazar. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chemistry, 2, 286-293 (2010).

  • B.L. Ellis, M. Wagemaker, F.M. Mulder, and L.F. Nazar. Comment on "Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties". Adv. Funct. Mater., 20, 186-188 (2010).

Please see Linda Nazar's Google Scholar profile for a current list of her peer-reviewed articles.

Video Profile

Contact

Office: QNC 4609

Phone: 519-888-4567, ext.84637

Email: lfnazar@uwaterloo.ca

Personal Website: Linda Nazar