Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win-office@uwaterloo.ca
Research interests: Functional polymers, Sustainable polymers and nanomaterials, Polymer modification, Multiphase and multifunctional polymers, Polymer processing, Nanocomposites
My research focuses on the rational design of sustainable polymer and nanomaterial systems for a range of industrial, engineering, and advanced material applications. My group seeks to advance the sustainability and functionality of polymers, and our scope includes the following research areas listed below.
The utilization of renewable resources for polymer production is receiving substantial interest. My group is interested in bio-based and renewable macromolecules (e.g. starch, cellulose, cellulose nanocrystals, lignin, biocarbon, tannins, and chitosan) as a feedstock to fabricate nanomaterials and a variety of sustainable materials including elastomers, plastics, hydrogels, engineering polymers, and nanocomposites. We employ various chemical tailoring strategies and polymer processing technologies to make these feedstocks more suitable for polymeric materials.
Polymer modification
The chemical modification of polymers is a post-polymerization process which is used for the following purpose:
We focus on the design and development of modification processes/systems by utilizing Chemistry and Engineering tools. Some of the approaches we undertake to modify polymers includes reactive extrusion processes, hydrogenation, epoxidation, hydroxymethylation, and hydrosilylation of various polymers and elastomers/rubber; Grafting – from and grafting – to modification of polysaccharides and polymers; Reactive extrusion processes.
Nanomaterials and nanocomposites
My research interest in nanomaterials focuses on innovating novel techniques for the synthesis, modification, characterization, and applications of renewable polymer-based nanomaterials. I have targeted functional nanomaterials with attributes for antimicrobial carriers, UV shielding properties, corrosion inhibiting additives, oxygen scavenging films, superhydrophobic coatings, and dipped rubber goods. A critical challenge in nanocomposite research is to translate the exceptional nanoscale properties of nanomaterials to the macroscale, which relies on the dispersion of nanomaterials, selection of matrices, and optimization of composite microstructures. Various load-bearing natural composites such as teeth, turtle and eggshells, bones, and wood exemplify the importance of order and hierarchy starting at the nanoscale to tangible macroscopic levels. Drawing from these inspirations, my team aims to achieve similar multiphase and multifunctional polymeric materials via appropriate polymeric matrix selection along with composite architectures to ensure the multi-parameter property optimizations for corresponding applications. We develop nanocomposites based on cellulose nanocrystals, lignin nanoparticles, fumed silica, nanoclays, nano-biocarbon, carbon nanofibers, and graphene.
Polymer processing and application development
My research in polymer processing is focused on polymer blend morphology development and stabilization with a focus on multiphase renewable polymers. We target addressing the challenges associated with microstructure –processing – properties of polymer blends and their stabilization. We specifically target using chemistry and polymer processing tools to optimize the dispersion of nanoparticles in various single and multiphase polymer matrices for functional applications. We work with industrial collaborators and support application development efforts in packaging materials, lightly cured rubber latex products (e.g., gloves, condoms), highly cured rubber products (tire treads, shoe soles, conveyor belts), barrier films, coatings and paint, adhesives, engineering composites with functional attributes.
Waterloo Institute for Nanotechnology
Mike & Ophelia Lazaridis Quantum-Nano Centre, QNC 3606
University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
519-888-4567, ext. 38654
win-office@uwaterloo.ca
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.