What is Mechanical Engineering?

The field of mechanical engineering is concerned with the application of the fundamental principles and laws of nature to the development and betterment of a technological society and culture. Virtually anything that moves, whether animate or inanimate, falls within the scope of mechanical engineering.

Of all the engineering disciplines, mechanical engineering is the broadest and most diversified. In all technical areas and types of industries, mechanical engineers are involved in virtually every phase of design, synthesis, development, and refinement of machines, processes, and systems. Mechanical engineers are required to understand the laws of mechanics and thermodynamics, the effects of forces on solids and liquids, the flow of heat through substances, the properties of engineering materials, and the design of mechanisms to accomplish useful tasks. Mechanical engineers play a leading role in the advancement of technology for sustainable development.

What do mechanical engineers do?

Mechanical engineers are expected to face many technical and managerial challenges, such as:

  • Supervision of machine and/or plant operation
  • Prototype design, testing and scale-up
  • Theoretical analysis and model simulations
  • Technical and economic feasibility analysis
  • Management of personnel and technology
  • Failure analysis and cause determination
  • Technical marketing and maintenance

Career possibilities:

clipart spaceship

Manufacturing and next-generation material design

clipart wind turbine

Design of next-generation renewable energy systems

clipart vehicle

Engineering of automotive and aerospace systems

clipart signal

Development of robotic and biomechanical systems

Areas of focus in mechanical engineering

Fluid Mechanics/Environmental Fluid Mechanics

The courses in this area of specialization deal with a broad range of applications of the principles of thermodynamics and fluid mechanics, with emphasis on topics of industrial significance for example, aerodynamics, internal flows with heat and mass transfer, turbomachinery, and flows in the natural environment such as plumes in air and effluents in water. Many courses in fluid mechanics and thermal engineering are closely linked.

Machine Design and Solid Mechanics

The courses offered in this area of specialization range from those which provide the mathematical and physical basis of the subject matter to those which are largely applied in nature. Subjects treated are: mechanics (including vibrations); theories of elasticity, plasticity and fracture; machine design and design optimization.

Materials Engineering and Processing

This area of specialization consists of a comprehensive series of courses in metallurgy, including heat treatment, casting, welding, cold and hot forming. Nonmetallic materials, including plastics and ceramics, and composites such as fibreglass and sandwich structures are also considered

Automation and Control

The courses in this area of specialization are designed to provide the student with an understanding of the principles and control of production processes, the application of computers to the manufacturing activity and the organization of production. Topics treated are automation, metal forming, numerical control of machine tools, applications of fluid power and industrial noise control. These topics are also a prominent part of the mechanical portion of the Mechatronics Option.

Thermal Engineering

The courses in this area of specialization develop and apply the principles of thermodynamics, heat transfer (conduction, convection, radiation), and fluid mechanics to such topics as combustion; heating, ventilation, and air conditioning of buildings; and energy conversion. Many courses in fluid mechanics and thermal engineering are closely linked.

What can you do with a degree in Mechanical Engineering?

An applied science degree in mechanical or mechatronics engineering provides several versatile career paths. University of Waterloo graduates often pursue careers in automation, automotive aerospace, and forensics. See where some of our outstanding MME alumni are now, as shown below.

VP Sales & Business Development, Owner at Northridge Cybersecurity

Zwart earned a B.A.Sc. in Mechanical Engineering at the University of Waterloo in 2008, and currently specializes in cybersecurity.

Product Design Engineer at Apple

Gandhi earned a Bachelor of Applied Science (B.A.Sc.) in Mechanical Engineering with the Management Sciences Option at the University of Waterloo in 2021.

Data Scientist at Pelmorex Corp

Dr. Jalali earned a Doctor of Philosophy (Ph.D) in Mechanical Engineering at the University of Waterloo in 2016. Dr. Jalali has a B.A.Sc. and M.A.Sc. in Civil and Environmental Engineering. 

Visit our official Alumni Features page to view more career achievements of our oustanding alumni.

Are you an alumnus who wants to be featured on our page? Submit your information and photo using the official Alumni Feature webform.