Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
MC 5479
Dr. Giang Tran
Department of Mathematics | The University of Texas at Austin
Sparsity-Inducing Methods for Nonlinear Differential Equations
Sparsity plays a central role in recent developments of many fields such as signal and image processing, compressed sensing, statistics, and optimization. In practice, sparsity is promoted through the additional of an L1 norm (or related quantity) as a constraint or penalty in a variational model. Motivated by the success of sparsity-inducing methods in imaging and information sciences, there is a growing interest in exploiting sparsity in dynamical systems and partial differential equations. In this talk, we will investigate the connections between compressed sensing, sparse optimization, and numerical methods for nonlinear differential equations. In particular, we will discuss about sparse modeling as well as the advantage of sparse optimization in solving various differential equations arising from physical and data sciences.
Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.