Applied Mathematics Seminar | Zhi Li, Quantum error-correcting codes are far from classical: a quantitative examinationExport this event to calendar

Monday, March 11, 2024 2:30 PM EDT

QNC 0101<--break->

Speaker

Zhi Li, Perimeter Institute 

Title

Quantum error-correcting codes are far from classical: a quantitative examination

Abstract

Quantum error-correcting codes play a pivotal role in enabling fault-tolerant quantum computation. These codes protect quantum information through intricately designed redundancies that encode the information in a global manner. Unlike classical objects, in a quantum error-correcting code, the knowledge of individual subregions, even when combined, reveals nothing about the overall state.

In this talk, we explore the quantification of how far quantum error-correcting code are from classical states. We examine this question from three different perspectives: circuit complexity (the mimimal number of circuit depth needed to prepare a quantum state), expansion number (the minimal number of terms needed to expand the wavefunction), and a quantity we termed product overlap, which characterizes the maximal overlap between a given state and any product state. We will demonstrate why any quantum error-correcting code states must exhibit exponentially small product overlap, and how it implies lower bounds for the circuit complexity and the expansion number.

S M T W T F S
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2024 (76)
    1. June (3)
    2. May (13)
    3. April (12)
    4. March (19)
    5. February (15)
    6. January (14)
  2. 2023 (96)
    1. December (6)
    2. November (11)
    3. October (7)
    4. September (8)
    5. August (12)
    6. July (5)
    7. June (6)
    8. May (5)
    9. April (14)
    10. March (7)
    11. February (8)
    12. January (7)
  3. 2022 (106)
  4. 2021 (44)
  5. 2020 (33)
  6. 2019 (86)
  7. 2018 (70)
  8. 2017 (72)
  9. 2016 (76)
  10. 2015 (77)
  11. 2014 (67)
  12. 2013 (49)
  13. 2012 (19)
  14. 2011 (4)
  15. 2009 (5)
  16. 2008 (8)