Welcome to Chemical Engineering at the University of Waterloo
As part of Canada's largest engineering school and most innovative university, the Department of Chemical Engineering at the University of Waterloo is home to approximately 1,000 students, faculty and staff, and has thousands of alumni worldwide.
Our Department consistently ranks among the top two universities in Canada and the number one university in Ontario in Chemical Engineering according to the Shanghai Academic Ranking of World Universities.
In addition to offering undergraduate and graduate programs in chemical engineering, the Department provides academic expertise and support to Waterloo's collaborative nanotechnology and biomedical engineering programs.
The department's collaborative research culture, engaging teaching practices and state-of-the-art facilities create a vibrant learning environment where students are empowered to solve the problems our world faces.
Learn about Professor Christian Euler's research in biotechnology to develop novel microbial pathways to valorize waste products such as CO2, its reduced derivatives, and plastics toward the creation of a circular economy.
Are you wondering what Chemical Engineering is? Check out our new animation!
Chemical Engineering Lab Tour
Join us for a tour of the Chemical Engineering undergraduate labs in the Douglas Wright Engineering Building at the University of Waterloo.
Find out more by exploring the programs, research and news stories on this site.
News
Breakthrough study uncovers how microplastics stick to coral reefs
Climate change is devastating the world’s coral reefs, and pollution from microplastics in the oceans further damages these delicate ecosystems. Researchers at the University of Waterloo have made a breakthrough in understanding how and why microplastics get trapped in coral reefs. The new study sheds light on the role of mucus naturally secreted by coral reefs in the accumulation of microplastic pollution.
Removal strategies must ensure that detaching microplastics does not worsen environmental impact by floating back into the ocean water. Designing artificial coral reefs to capture microplastics may be the most promising answer in the race to save the planet’s coral reefs.
Coral reefs are diverse and important ecosystems, providing habitat for 25 percent of all marine life. They provide food, shelter, breeding grounds, and nurseries for millions of species. Coral reefs play a role in filtering water and creating oxygen. They also protect shorelines from the impact of storms and floods.
Chemical engineering student wins first place in 2025 GradFlix Competition
Chemical engineering graduate student Ananya Muralidharan took first place in this year’s GradFlix competition! Three other chemical engineering graduate students were finalists!
GRADflix is an annual competition that invites graduate students to present their complex research in a way that is accessible to a wider audience. Graduate students create presentations using a combination of live footage, slideshows, and animations to showcase their work. A panel of judges from various fields at the University of Waterloo selects the top four videos, which receive cash prizes. Additionally, there is a Finalist’s Choice Award determined by voting from fellow participants.
Launched in 2018 by the University of Waterloo’s Graduate Studies and Postdoctoral Affairs (GSPA), GRADflix is funded by graduate students through the Graduate Studies Endowment Fund. Three other chemical engineering students were also finalists.
Bioinspired micro-robots use light to swim
Inspired by the movement of water striders cruising on the surface of water, a research group led by Professor Hamed Shahsavan have designed smart, soft microrobots whose movements can be controlled by light, offering exciting possibilities in environmental remediation and biomedical applications.
Imagine autonomous robots deployed to clean up microplastics in bodies of water. The research also has potential in biomedical applications. Microrobots could be guided inside the human body to conduct medical procedures.
“We’re moving toward smart swimming robots with more autonomous behaviour, by making them respond to external cues like light, or magnetic fields,” said Shahsavan, a professor in the Department of Chemical Engineering