Professor

Contact InformationMark Pritzker

Phone: 519-888-4567 x32542
Location: E6 2014

Biography Summary

Mark Pritzker is a Professor in the Department of Chemical Engineering at the University of Waterloo. His research interests include electrochemical engineering, fuel cells, batteries, nanotechnology and materials science.

In the area of electrochemical engineering, Professor Pritzker and his team for many years has investigated the use of direct current and pulse plating for electrodeposition of metal (Cu, Co, Ni) and alloy (Co-Ni, Fe-Ni) coatings. Their work involves experimental studies and mathematical modelling of deposit morphology, electrode response, surface properties and electrode reaction kinetics for applications such as corrosion protection and fabrication of electronic devices and components. He has also recently collaborated with a colleague Professor Nasser Abukhdeir on the use of atomistic simulation methods such as kinetic Monte Carlo techniques to investigate fundamental aspects of the dynamics of copper electrodeposition and the evolution of the coating microstructure.

For a number of years, Professor Pritzker has also collaborated with colleagues Professor Michael Fowler and Zhongwei Chen, in the Chemical Engineering Department on several research projects concerned with polymer electrolyte fuel cells (PEMFC) and lithium-ion batteries. These include the development of novel Pt-based catalysts for PEMFCs, study of the degradation and evolution of defects in the catalyst layer of PEMFCs and the detailed investigation of the behaviour of lithium iron phosphate electrodes during the charge and discharge of lithium-ion batteries. Professor Pritzker is also conducting research with another colleague Professor Yuning Li on the development of an all-inorganic oxide solar cell. He has also continued his collaboration with Professor Pu Chen, also of the Chemical Engineering Department, aimed at developing nanomaterials based on self-assembling oligopeptides for applications in tissue engineering, drug delivery and biosensors. A recent project was aimed at combining these oligopeptides with normally hydrophobic carbon nanotubes in order to disperse them in aqueous solutions and to form novel hybrid hydrogels with very useful properties.

Several of these research projects are being conducted with industry research partners such as BlackBerry and Automotive Fuel Cell Cooperation Corporation.

Research Interests

  • Electrochemical Engineering
  • Metal and Alloy Electrodeposition
  • Polymer electrolyte membrane fuel cells (PEMFC) and solid oxide fuel cells (SOFC)
  • Nanotechnology
  • Process Systems Engineering
  • Separation Processes
  • Oriented Strand Board Manufacturing
  • Green Reaction Engineering
  • Interfacial Phenomena
  • Colloids & Porous Media
  • Water

Education

  • 1985, Doctorate, PhD, Virginia Polytechnic Institute and State University
  • 1978, Master's, MS, University of California, Berkeley
  • 1976, Bachelor's, BEng, McGill University

Courses*

  • CHE 574 - Industrial Wastewater Pollution Control
    • Taught in 2015, 2016, 2017, 2018
  • CHE 674 - Industrial Waste Treatment
    • Taught in 2015, 2016, 2017, 2018
  • CHE 775 - Research Topics in Environmental Engineering and Pollution Control
    • Taught in 2016
  • CHE 331 - Electrochemical Engineering
    • Taught in 2015, 2016
  • CHE 620 - Applied Engineering Mathematics
    • Taught in 2017
  • CHE 231 - Physical Chemistry 2
    • Taught in 2015, 2018
* Only courses taught in the past 5 years are displayed.

Selected/Recent Publications

  • Amini, Kiana and Gostick, Jeff and Pritzker, Mark D, Metal and Metal Oxide Electrocatalysts for Redox Flow Batteries, Advanced Functional Materials, 2020
  • Amini, Kiana and Pritzker, Mark D, In situ polarization study of zinc--cerium redox flow batteries, Journal of Power Sources, 471, 2020
  • Amini, Kiana and Pritzker, Mark D, Improvement of zinc-cerium redox flow batteries using mixed methanesulfonate-chloride negative electrolyte, Applied Energy, 255, 2019
  • Yang, Yiyi and Pritzker, Mark and Li, Yuning, Electrodeposited p-type Cu2O thin films at high pH for all-oxide solar cells with improved performance, Thin Solid Films, 676, 2019, 42 - 53
  • Hoque, Md Ariful and Hassan, Fathy M and Jauhar, Altamash M and Jiang, Gaopeng and Pritzker, Mark and Choi, Ja-Yeon and Knights, Shanna and Ye, Siyu and Chen, Zhongwei, Web-Like 3D architecture of pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance, ACS Sustainable Chemistry & Engineering, 6(1), 2018, 93 - 98
  • Farkhondeh, M and Pritzker, M and Fowler, M and Delacourt, C, Mesoscopic Modeling of a LiFePO4 Electrode: Experimental Validation under Continuous and Intermittent Operating Conditions, Journal of The Electrochemical Society, 164(11), 2017
  • Farkhondeh, M and Pritzker, M and Delacourt, C and Liu, SS-W and Fowler, M, Method of the Four-Electrode Electrochemical Cell for the Characterization of Concentrated Binary Electrolytes: Theory and Application, The Journal of Physical Chemistry C, 121(8), 2017, 4112 - 4129
  • Mao, Z and Farkhondeh, M and Pritzker, M and Fowler, M and Chen, Z, Calendar Aging and Gas Generation in Commercial Graphite/NMC-LMO Lithium-Ion Pouch Cell, Journal of The Electrochemical Society, 164(14), 2017