Future graduate students

Tuesday, August 15, 2023 9:00 am - 10:00 am EDT (GMT -04:00)

Sainath Motlakunta PhD Thesis Defence

Developing a Large-Scale, Programmable Trapped Ion Quantum Simulator with In Situ Mid-Circuit Measurement and Reset

Quantum simulators are a valuable resource for studying complex many-body systems. With their ability to provide near-term advantages, analog quantum simulators show great promise. During the course of my PhD, my aim was to construct a large-scale trapped-ion based analog quantum simulator with several objectives in mind: controllability, minimal external decoherence, an expandable toolkit for quantum simulations, enhanced stability through robust design practices, and pushing the boundaries of error correction.

One of my key achievements is the demonstration of high-fidelity preservation of an “asset” ion qubit while simultaneously resetting or measuring a neighboring “process” qubit located a few microns away. My results show that I achieve a probability of accidental measurement of the asset qubit below 1×10−3 while resetting the process qubit. Similarly, when applying a detection beam on the same neighboring qubit to achieve fast detection times, the probability remains below 4 × 10−3 at a distance of 6 μm. These low probabilities correspond to the preservation of the quantum state of the asset qubit with fidelities above 99.9% for state reset and 99.6% for state measurement.

Additionally, I successfully conduct a dissipative many-body cooling experiment based on reservoir engineering by leveraging site-selective mid-circuit resets. I propose and optimize a protocol utilizing reservoir engineering to efficiently cool the spin state of a subsystem coupled to a reservoir with controlled dissipation. Through analog quantum simulation of this protocol, I am able to demonstrate the lowering of energy within the subsystem.

Furthermore, I thoroughly discuss the design, fabrication, and assembly of a large-scale trapped ion quantum simulator called the Blade trap as part of my PhD work. I highlight the specific design considerations taken to isolate the trapped ions from external disturbances that could introduce errors. Comprehensive testing procedures are presented to evaluate the performance and stability of the Blade trap, which are crucial for assessing the effectiveness of the design. An important milestone I achieve is reaching a base pressure below 9E-13 mbar, demonstrating the successful implementation of techniques to maintain an extremely low-pressure environment ideal for quantum simulation.

Wednesday, August 9, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Yuming Zhao

Positivity and Sum-of-Squares in Quantum Information

A multivariate polynomial is said to be positive if it takes only non-negative values over reals. Hilbert's 17th problem concerns whether every positive polynomial can be expressed as a sum of squares of other polynomials. In general, we say a noncommutative polynomial is positive (resp. matrix positive) if plugging operators (resp. matrices) always yields a positive operator. Many problems in math and computer science are closely connected to deciding whether a given polynomial is positive and finding certificates (e.g., sum-of-squares) of positivity.

In the study of nonlocal games in quantum information, we are interested in tensor product of free algebras. Such an algebra models a physical system with two spatially separated subsystems, where in each subsystem we can make different quantum measurements. The recent and remarkable MIP*=RE result shows that it is undecidable to determine whether a polynomial in a tensor product of free algebras is matrix positive. In this talk, I'll present joint work with Arthur Mehta and William Slofstra, in which we show that it is undecidable to determine positivity in tensor product of free algebras. As a consequence, there is no sum-of-square certificate for positivity in such algebras.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Tuesday, August 1, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Shlok Nahar

Time-resolved Quantum Key Distribution using Semiconductor Quantum Dots with Oscillating Photonic States

Abstract: Quantum dot-based entangled photon sources are promising candidates for quantum key distribution (QKD), as they can in principle emit deterministically, with high brightness and low multiphoton contribution. However, quantum dots (QD) often inherently possess a fine structure splitting (FSS). Since the entangled photonic state in the presence of non-zero FSS is oscillating, one must settle for a lower efficiency source through temporal post-selection or a lower measured entanglement fidelity. In both cases, the overall key rate is reduced. Our QKD analysis shows that this trade-off can be overcome by constructing a time-resolved QKD protocol where all photon pairs emitted by a QD with non-zero FSS can be used in secret key generation. This protocol works only when the detection system's temporal resolution is much smaller than the FSS period. By implementing our protocol, higher key rates can be achieved as compared to previous QKD experiments with QD entangled photon pair sources.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Wednesday, July 26, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Evan Peters

Some Learning Bounds and Guarantees for Testing (Quantum) Hypotheses

Machine learning is a powerful tool, yet we often do not know how well a learning algorithm might perform on any given task. One standard approach to bound the accuracy of a learning algorithm is to reduce the learning task to hypothesis testing. Fano's inequality then states that a large amount of mutual information between the learner's observations and the set of unknown parameters is a necessary condition for success.

In this talk, I will describe how such a condition is also sufficient for succeeding at some learning task, thereby providing a purely information-theoretic guarantee for learning. Noting that this guarantee has an immediate extension to quantum information theory, I will then introduce the task of "testing quantum hypotheses", in which the unknown parameters of the learning task are prepared in a quantum register in superposition (rather than being sampled stochastically) and the learner's success at this task is measured by their ability to establish quantum correlations with that register. I will discuss ongoing attempts to characterize this scenario.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo 

Thursday, July 20, 2023 11:00 am - 12:00 pm EDT (GMT -04:00)

Virtual IQC PhD Candidate Seminar Featuring Jamal Busnaina

Analog Quantum Simulations using a Parametric Multimode Cavity

While universal quantum computers are still years away from being used for simulating complicated quantum systems, analog quantum simulators have become an increasingly attractive approach to studying classically intractable quantum systems in condensed matter physics, chemistry, and high-energy physics.  

We propose a programmable platform based on a superconducting multimode cavity. The unique design of the cavity allows us to program arbitrarily connected lattices where the coupling strength and phase of each individual coupling are highly programmable via parametrically activated interactions. The effectiveness of the cavity-based AQS platform was demonstrated by the experimental simulation of two interesting models. First, we simulated the effect of a fictitious magnetic field on a 4-site plaquette of a bosonic Creutz ladder. We observed topological features such as emergent edge states and localized soliton states. The platform's ability is further explored by introducing pairing (downconversion) terms to observe features of the Bosonic Kitaev chain (BKC), such as chiral transport and sensitivity to boundary conditions.   
Monday, July 17, 2023 2:30 pm - 3:30 pm EDT (GMT -04:00)

Simulation, control and sensing in open quantum systems

IQC Colloquium - Nir Bar-Gill, Applied Physics and Physics, The Hebrew University

In this talk I will address these topics through the platform of nitrogen-vacancy (NV) spins in diamond, in the context of purification (or cooling) of a spin bath as a quantum resource and for enhanced metrology and sensing.

Wednesday, July 12, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Pulkit Sinha

Optimal Bounds for Quantum Learning via Information Theory

I will discuss our recent work on finding lower bounds to solve three problems in Quantum Learning Theory: Quantum PAC learning, Quantum Agnostic Learning and Quantum Coupon Collector. Our main goal was to use tools from Quantum Information Theory, specifically the data processing inequality, to obtain these results, instead of going for more exotic ones. We succeed in doing so for the first two problems, and we show concretely that it doesn't work for the last problem, due to an inherent loss of information that is possible even for valid learning algorithms, for which we give a bound using an alternate method that utilizes the analysis we went through previously. We hope that these tools are broadly applicable to other quantum learning problems.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo 

Tuesday, July 4, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Mohammad Ayyash

Driving-enhanced Qudit-Oscillator Interactions

Classical drives on a qudit have been extensively used to create, control and read out quantum states. We consider a qudit-oscillator system where the qudit is continuously driven. We show that strong driving allows for qudit-conditional operations on the oscillator such as displacement, squeezing and higher order effects. We discuss the case of a driven qubit with linear or quadratic coupling to the oscillator, and we generalize the scheme to multi-qubit and qudit (d>2) systems. We discuss the use of driven qudit-oscillator systems for encoding and performing operations on bosonic codes.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo