Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, April 30, 2024 3:00 pm - 4:00 pm EDT (GMT -04:00)

Two Prover Perfect Zero Knowledge for MIP*

CS/MATH Seminar - Kieran Mastel from IQC ZOOM + IN PERSON

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

The recent MIP*=RE theorem of Ji, Natarajan, Vidick, Wright, and Yuen shows that the complexity class MIP* of multiprover proof systems with entangled provers contains all recursively enumerable languages. In prior work Grilo, Slofstra, and Yuen showed (via a technique called simulatable codes) that every language in MIP* has a perfect zero knowledge (PZK) MIP* protocol.  The MIP*=RE theorem uses two-prover one-round proof systems, and hence such systems are complete for MIP*. However, the construction in Grilo, Slofstra, and Yuen uses six provers, and there is no obvious way to get perfect zero knowledge with two provers via simulatable codes. This leads to a natural question: are there two-prover PZK-MIP* protocols for all of MIP*?

In this talk we answer the question in the affirmative. For the proof, we use a new method based on a key consequence of the MIP*=RE theorem, which is that every MIP* protocol can be turned into a family of boolean constraint system (BCS) nonlocal games. This makes it possible to work with MIP* protocols as boolean constraint systems, and in particular allows us to use a variant of a construction due to Dwork, Feige, Kilian, Naor, and Safra which gives a classical MIP protocol for 3SAT with perfect zero knowledge. To show quantum soundness of this classical construction, we develop a toolkit for analyzing quantum soundness of reductions between BCS games, which we expect to be useful more broadly. This talk is based on joint work with William Slofstra

Tuesday, May 14, 2024 - Thursday, May 16, 2024 (all day)

ETSI/IQC Quantum Safe Cryptography Conference 2024

ETSI and the Institute for Quantum Computing are pleased to announce the 10th ETSI/IQC Quantum Safe Cryptography Conference, taking place in Singapore on May 14-16, 2024. The event will be hosted by the Centre for Quantum Technologies, National University of Singapore.

This event was designed for members of the business, government, and research communities with a stake in cryptographic standardization to facilitate the knowledge exchange and collaboration required to transition cyber infrastructures and business practices to make them safe in an era with quantum computers. It aims to showcase both the most recent developments from industry and government and cutting-edge potential solutions coming out of the most recent research.

Monday, May 27, 2024 2:30 pm - 3:30 pm EDT (GMT -04:00)

Semiconductor spin qubits for quantum networking

IQC Colloquium - Akira Oiwa, Osaka University

Quantum-Nano Centre, 200 University Ave West, Room QNC 1501 Waterloo, ON CA N2L 3G1

Semiconductor spin qubits are well recognized as a promising platform for scalable fault-tolerant quantum computers (FTQCs) because of relatively long spin coherence time in solid state devices and high-electrical tuneability of the quantum states [1]. In addition, semiconductors have a great potential for applications in quantum communications because of their abilities in optical devices. Therefore, especially in quantum repeater applications, the semiconductor spin qubits provide a route to efficiently connect qubit modules or quantum computers via optical fibers and construct global quantum networks, contributing to realize secure quantum communications and distributed quantum computing [2]. In this talk, we present the physical process enabling the quantum state conversion from single photon polarization states to single electron spin states in gate-defined quantum dots (QDs) and its experimental demonstration [3]. As recent significant achievements, we discuss that the enhancement of the conversion efficiency from a single photon to a single spin in a quantum dot using photonic nanostructures [4]. Finally, we present a perspective of high conversion efficiency quantum repeater operating directly at a telecom wavelength based on semiconductor spin qubits.

[1] G. Burkard et al., Rev. Mod. Phys. 95, 025003 (2023). [2] A. Oiwa et al., J. Phys. Soc. Jpn. 86, 011008 (2017); L. Gaudreau et al., Semicond. Sci. Technol. 32, 093001 (2017). [3] T. Fujita et al., Nature commun. 10, 2991 (2019); K. Kuroyama et al., Phys. Rev. B 10, 2991 (2019). [4] R. Fukai et al., Appl. Phys. Express 14, 125001 (2021); S. Ji et al., Jpn. J. Appl. Phys. 62, SC1018 (2023).