Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Friday, March 9, 2018 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Dusan Sarenac: Far-field moire neutron interferometry

Dusan SarenacIn this talk I will present our work on developing far-field moire neutron interferometry at the National Institute of Standards and Technology's Center for Neutron Research. We have successfully built a two phase-grating moire interferometer and employed it for phase contrast imaging.

Tuesday, March 13, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

Solution to a Long-Standing Controversy in Paul-Trap Physics

Angus Kan, Wesleyan University

The study of charged particles dynamics in a Paul trap is the foundation of its wide-ranging applications, including analyzing proteins, determining isotope ratios, and constructing a quantum computer. However, in the simplest case of two-particle dynamics, there remains a controversy on whether a two-ion planar crystal undergoes an order-to-chaos transition at a critical, well-defined trap parameter value. Via analytical and numerical investigation of the Mathieu-Coulomb equations, I show that the transition does not exist.

Tuesday, March 20, 2018 11:45 am - 11:45 am EDT (GMT -04:00)

Quantum Hacking after Measurement-Device-Independent Quantum Cryptography

Anqi Huang - IQC

Quantum key distribution (QKD) is able to achieve information-theoretic security in principle. However, in practice, imperfect devices threaten the security of quantum cryptographic systems. As a promising countermeasure against practical attacks, measurement-device-independent (MDI) QKD is immune to all detector side-channel attacks. Nevertheless, there are some limitations of the MDI QKD protocol. To overcome the technical limitations of MDI QKD, I scrutinized and evaluated other two countermeasures against imperfect detections.

Wednesday, March 21, 2018 10:30 am - 10:30 am EDT (GMT -04:00)

Coupling surface acoustic waves to artificial atoms to study the phononic Lamb shift.

Thomas Aref, University of Illinois at Urbana-Champaign

My research focuses on probing superconducting quantum bits or qubits with acoustic radiation in the form of surface acoustic waves (SAWs). This allows the investigation of sound interacting with artificial atoms on a quantum mechanical level, i.e. quantum acoustics with traveling phonons. We can then reproduce findings from quantum optics with sound taking over the role of light, highlighting the similarities between phonons and photons.

Thursday, March 22, 2018 1:30 pm - 1:30 pm EDT (GMT -04:00)

Quantum acoustics with superconducting qubits

Yiwen Chu - Yale University

The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects.

Friday, March 23, 2018 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Sangil Kwon: Phase in Superfluids and Spontaneously Broken Gauge Symmetry

It is often said that superfluids (including superconductors) can be described by a macroscopic quantum wavefunction and their phase transition can be understood based on the concept of spontaneously broken gauge symmetry. This statement is not, however, trivial at all. In this seminar, I will discuss some conceptual problems that stem from applying the concept of spontaneously broken gauge symmetry to superfluids.

Monday, March 26, 2018 4:00 pm - 4:00 pm EDT (GMT -04:00)

All no-signalling theories are local-realistic

Gilles Brassard, Université de Montréal

It is generally believed that experimental violations of Bell's inequalities (especially the recent so-called loophole-free experiments) provide evidence that quantum theory cannot be both local and realistic. We demonstrate to the contrary that all reversible-dynamics no-signalling operational theories (including unitary quantum theory) can be given a local-realistic interpretation.

Tuesday, March 27, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

Simulating Cosmological Models in Optical Lattices

Gerard Valentí Rojas - The Institute of Photonic Sciences, Spain

The laws of quantum mechanics have helped scientists to unravel the behaviour of nature at its most fundamental scales. However, quantum phenomena are often difficult to understand and simulations have historically provided a useful framework for their study. Nevertheless, when dealing with large quantum systems or real-time dynamics, the computational cost of numerical simulations can become unfeasible.