Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, October 17, 2016 11:45 am - 11:45 am EDT (GMT -04:00)

Special seminar: Vincent Russo

Extended nonlocal games from quantum-classical

Vincent Russo, IQC

Several variants of nonlocal games have been considered in the study of quantum entanglement and nonlocality. In this talk, we shall consider two such variants called quantum-classical games and extended nonlocal games. The players, Alice and Bob, may play the game according to various classes of strategies. An entangled strategy is one in which Alice and Bob use quantum resources in the form of a shared quantum state and sets of measurements. One may ask whether the dimension of the shared state makes a difference in how well the players can perform using an entangled strategy.

Wednesday, October 19, 2016 6:30 pm - 6:30 pm EDT (GMT -04:00)

Beer + Science with Shohini Ghose

Come get your nerd on and learn about the world of physics with Nerd Nite KW! They will take you through quantum 101, and then see if you were paying attention with some friendly rounds of trivia. Aspiring scientists and experts alike are welcome. Special guest speaker Dr. Shohini Ghose, an Associate Professor of Physics and Computer Science and Director of the Centre for Women in Science at Wilfrid Laurier University in Canada, will also be giving a presentation. Make sure to also check out QUANTUM: The Exhibition while you're there.

Monday, October 24, 2016 11:45 am - 12:46 pm EDT (GMT -04:00)

Seminar: Vern Paulsen

Perfect embezzlement of entanglement

Van Dam and Hayden introduced the concept of approximate embezzlement of entanglement. Even if one allows infinite dimensional resource spaces but requires a bipartite tensor product structure of the resource space, perfect embezzlement is still impossible. But in the commuting operator framework perfect embezzlement is possible. We then introduce unitary correlation sets and relate these ideas to the conjectures of Connes and Tsirelson.

Monday, October 24, 2016 3:00 pm - 3:00 pm EDT (GMT -04:00)

Seminar: Christoph Marquardt

Practical continuous variable quantum communication in fibre and free space systems

Christoph Marquardt, Max Planck Institute for the Science of Light

I will review our recent activities in continuous variable QKD that aims for the deployment of QKD equipment compatible with current telecom standards and research in satellite QKD that will make it possible to bridge long distances. In optical fibre systems continuous variable quantum cryptography reaches GHz speed and offers efficient integration with known telecommunication techniques, especially in short inner-city or data center links. Sending and receiving components, including quantum random number generators, can be efficiently built in integrated components. Optical free space communication is a reliable means to transmit classical and quantum information. Free space links offer ad-hoc establishment in intra-city communication, air-to-ground or satellite-to-ground scenarios.

Tuesday, October 25, 2016 10:00 am - 10:00 am EDT (GMT -04:00)

Special Seminar: Greg Holloway

Metal-oxide-semiconductor (MOS) Si quantum dots

Greg Holloway, IQC

Electrostatically defined quantum dots provide a flexible implementation for scalable spin-based quantum information processing. Recently Si has emerged as a promising platform for these systems, due to its long electron spin coherence times, and its compatibility with numerous fabrication processes. In this talk I will give a detailed description of the device architecture, as well as a description of transport through Si quantum dots.

Friday, October 28, 2016 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series: Pol Forn Diaz

Title TBA

If you're coming from the Lazaridis Centre, take the 11:35am shuttle from QNC to RAC1, and they can return to QNC from RAC1 @ 1:15pm.

A light lunch will be provided.

Monday, October 31, 2016 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Martin Suchara

Efficient Fault-Tolerant Quantum Computing

Martin Suchara, AT&T Labs Research

Quantum error correction presents some of the most significant and interesting challenges that must be resolved before building an efficient quantum computer. Quantum error correcting codes allow to successfully run quantum algorithms on unreliable quantum hardware. Because quantum hardware suffers from errors such as decoherence, leakage or qubit loss, and these errors corrupt delicate quantum states rather than binary information, the known error correction techniques are complex and have a high overhead. 

Monday, November 7, 2016 11:30 am - 11:30 am EST (GMT -05:00)

Theory of Quantum Information and Computation Seminar: Ashwin Nayak

A proof of the quantum data processing inequality with a combinatorial flavour

Ashwin Nayak, Institute for Quantum Computing

The quantum data processing inequality (equivalently, the strong sub-additivity of von Neumann entropy) is a cornerstone of quantum information theory.  It has been proven in numerous ways, each proof highlighting different aspects of the property.