Professor Sushanta Mitra's research team developing an anti-viral coating against COVID-19

Wednesday, July 15, 2020

New research aims to create a surface coating that will kill COVID-19 on contact

New research is underway to develop a coating that will kill the COVID-19 virus immediately upon contact with any surface. The antiviral coating could be applied to all personal protective equipment and high-touch surfaces, greatly reducing the risk of community transmission of the virus.

The Waterloo Institute for Nanotechnology (WIN) within the University of Waterloo, is working in collaboration with SiO2 Innovation Labs on the research.

“The COVID-19 virus can survive on surfaces for 24 hours or more,” said Sushanta Mitra, Professor of Mechanical and Mechatronics Engineering and lead researcher on the project. “In order to protect frontline workers and the general public, it’s important that the virus be neutralized immediately when it comes into contact with any surface; our work will culminate in the production of an anti-viral coating that will do just that.”

Sushantra Mitra in the lab.
Mitra’s team has developed an innovative experimental set-up to quantify the adhesion force between the viral load and the coated surface. Mitra is using water droplets to mimic the primary mode of transmission of COVID-19 between humans – droplets of saliva or other bodily fluids. Further testing will determine the coatings' ability to de-activate SARS-CoV-2 that causes COVID-19 illness in our populations.

The process for creating the coating is multi-step, involving the development of techniques to durably coat the anti-viral material of different surfaces, understanding the origin of the physical forces between the virus and the coated materials through careful experiments and the development of a computational model and finally the creation of an optimal formulation of the coating materials based on these studies. Read the full story on Waterloo Stories

Image Source