Future graduate students

Friday, February 3, 2023 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Today: Metamaterials for Broadband Light Absorption

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

En Français

Cyberattacks and data breaches are an invisible but growing threat that is becoming more commonplace against the landscape of technological growth and development. Quantum cryptography offers data protection in our evolving digital spaces.

Monday, January 23, 2023 10:30 am - 12:00 pm EST (GMT -05:00)

Silicon Colour Centres

IQC Colloquium Featuring Dr. Stephanie Simmons - Photonic

The future global quantum internet will require high-performance matter-photon interfaces. The highly demanding technological requirements indicate that the matter-photon interfaces currently under study all have potentially unworkable drawbacks, and there is a global race underway to identify the best possible new alternative. For overwhelming commercial and quantum reasons, silicon is the best possible host for such an interface. Silicon is not only the most developed integrated photonics and electronics platform by far, isotopically purified silicon-28 has also set records for quantum lifetimes at both cryogenic and room temperatures ...

En français

What happens when a computer makes a ‘typo’ or error at the very fundamental level – if a zero accidentally becomes a one? In classical computers, we can use repetition in the binary signals to make computers tolerant to faults such as these.

Monday, January 23, 2023 4:00 pm - 5:00 pm EST (GMT -05:00)

Blueprint for creating massive and large spatial quantum superposition in a lab

IQC Colloquium Featuring Anupam Mazumdar, University of Groningen

We are led to create a massive and large spatial quantum superposition to probe the quantum nature of gravity in a laboratory. In particular, to witness the quantum entanglement mediated via the quantum nature of gravity, we will need to prepare a pure quantum state of mass 10^{-15} -10^{-14}Kg with a spatial quantum superposition of 10-100 microns and a coherence time of nearly 1-2 seconds. ...

En français

The creation of a material that absorbs the majority, if not all light, would improve the effectiveness of health-related equipment. Michael Reimer, a faculty member at the Institute for Quantum Computing and researcher in Electrical and Computer Engineering at the University of Waterloo, has set his sights on creating an artificially engineered material, known as a metamaterial, to do just that.

Tuesday, December 13, 2022 3:30 pm - 4:30 pm EST (GMT -05:00)

Generating k EPR-pairs from an n-party resource state

IQC Math CS Seminar - featuring Mario Szegedy, Rutgers University

Motivated by quantum network applications over classical channels, we initiate the study of n-party resource states from which LOCC protocols can create EPR-pairs between any k disjoint pairs of parties. ...

Friday, December 2, 2022 10:30 am - 11:30 am EST (GMT -05:00)

The SuperCDMS experiment at SNOLAB

Seminar Presentation by Richard Germond, Queen's University

A number of astrophysical and cosmological observations suggest that roughly 85% of the matter in the Universe is composed of dark matter, presumed to be a particle outside the standard model of particle physics. Direct detection experiments look for signatures of a dark matter particle scattering with a sensitive detector; of the different technologies used for this, cryogenic detectors are well-suited for detecting low-mass dark matter due to their low energy thresholds.