Future graduate students

Monday, March 5, 2018 4:00 pm - 4:00 pm EST (GMT -05:00)

Deterministic Quantum Dense Coding Networks

Seminar featuring Titas Chanda, Harish-Chandra Research Institute

Emergence of quantum information science has led to a paradigm shift in communication systems. In the past couple of decades, quantum information processing tasks like quantum cryptography, dense coding, quantum teleportation etc. have been shown to have advantages over their classical counterparts and have also been successfully implemented in laboratories.

Thursday, March 8, 2018 12:00 pm - 12:00 pm EST (GMT -05:00)

Transformative Quantum Technologies (TQT) Lunch and Learn

Why a listing in London could make sense for Canadian early stage technology companies

Featured Speaker: Sarah Baker, Head of North American Strategic Engagement, London Stock Exchange Group

London is the most international stock market in the world, with more international companies listed than any other stock exchange.

Wednesday, February 28, 2018 10:00 am - 10:00 am EST (GMT -05:00)

Correlated dissipation: inhibiting atomic decay via cooperative dynamics

Ana Asenjo Garcia - California Institute of Technology

Dissipation is a pervasive problem in many areas of physics. In quantum optics, losses curb our ability to realize controlled and efficient interactions between photons and atoms, which are essential for many technologies ranging from quantum information processing to metrology. Spontaneous emission - in which photons are first absorbed by atoms and then re-scattered into undesired channels - imposes a fundamental limit in the fidelities of many quantum applications, such as quantum memories and gates.

Thursday, March 22, 2018 1:30 pm - 1:30 pm EDT (GMT -04:00)

Quantum acoustics with superconducting qubits

Yiwen Chu - Yale University

The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects.

Monday, February 26, 2018 11:00 am - 11:00 am EST (GMT -05:00)

Quantum optimization using superconducting qubits: A new platform

Rakesh Tiwari, McGill University

Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example quantum annealing, based on the quantum tunnelling effect, has recently been shown to scale exponentially better with system size as compared with classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation.

Friday, March 23, 2018 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Sangil Kwon: Phase in Superfluids and Spontaneously Broken Gauge Symmetry

It is often said that superfluids (including superconductors) can be described by a macroscopic quantum wavefunction and their phase transition can be understood based on the concept of spontaneously broken gauge symmetry. This statement is not, however, trivial at all. In this seminar, I will discuss some conceptual problems that stem from applying the concept of spontaneously broken gauge symmetry to superfluids.

Thursday, February 22, 2018 7:00 pm - 7:00 pm EST (GMT -05:00)

Entangled: The series – QUANTUM + logic

Quantum mechanics reveals that at its core, the world is not as it seems – it is far more interesting.
 
In the quantum world, outcomes are counter-intuitive, differing from what we expect based on our everyday experiences. The particle physicist Richard Feynman remarked that this means we seem to have to walk “a logical tightrope” when we talk about a quantum system.  
 

Monday, January 29, 2018 2:30 pm - 2:30 pm EST (GMT -05:00)

Engineering magnetism and chiral edge state of quantum anomalous Hall system

Ke He, Tsinghua University

The quantum anomalous Hall (QAH) effect is a quantum Hall effect induced by spontaneous magnetization instead of an external magnetic field. The effect occurs in two-dimensional (2D) insulators with topologically nontrivial electronic band structure which is characterized by a non-zero Chern number. The experimental observation of the QAH effect in thin films of magnetically doped (Bi,Sb)2Te3 topological insulators (TIs) paves the way for practical applications of dissipationless quantum Hall edge states.