Future graduate students

Wednesday, April 4, 2018 10:30 am - 10:30 am EDT (GMT -04:00)

‘Free-space’ Chiral Quantum Optics and a ‘Few-Atom’ Quantum Antenna

Peter Zoller - University of Innsbruck

We start with an overview of chiral quantum optics as quantum light-atom interfaces with broken left- right symmetry and associated quantum optical phenomena and applications. While chiral quantum optics is traditionally discussed in context of nano-photonics and nano fibers , we propose here a novel ‘free-space’ chiral quantum optics realized as atoms in free space coupled to a ‘few-atom’ quantum antenna. In particular, we discuss free space photonic quantum links between atoms (qubits) equipped with sending and receiving quantum antennas.

Tuesday, March 20, 2018 11:45 am - 11:45 am EDT (GMT -04:00)

Quantum Hacking after Measurement-Device-Independent Quantum Cryptography

Anqi Huang - IQC

Quantum key distribution (QKD) is able to achieve information-theoretic security in principle. However, in practice, imperfect devices threaten the security of quantum cryptographic systems. As a promising countermeasure against practical attacks, measurement-device-independent (MDI) QKD is immune to all detector side-channel attacks. Nevertheless, there are some limitations of the MDI QKD protocol. To overcome the technical limitations of MDI QKD, I scrutinized and evaluated other two countermeasures against imperfect detections.

Monday, March 12, 2018

A new way to use neutrons

Novel neutron interferometry technique is more powerful and practical

Researchers at the Institute for Quantum Computing (IQC), in collaboration with researchers from the National Institute of Standards and Technology (NIST) and the National Institute of Health (NIH), have developed a neutron interferometry technique that is more powerful, robust and practical than existing techniques, paving the way for advances in imaging, materials science, and fundamental physics and quantum research.

Monday, April 9, 2018 2:30 pm - 2:30 pm EDT (GMT -04:00)

Excitations in Topological Superfluid 3He

Yoonseok Lee, University of Florida

After the discovery of topological insulators, the concept of topology permeated the various fields of condensed matter physics. Symmetry of a quantum system plays an intriguing role in close association with topology, expanding the range of topological quantum systems to superconductors/superfluids. Superfliuid 3He, which has been a prime example of symmetry breaking phase transition, is also recognized as a quantum system with various topological nature.

Wednesday, March 21, 2018 10:30 am - 10:30 am EDT (GMT -04:00)

Coupling surface acoustic waves to artificial atoms to study the phononic Lamb shift.

Thomas Aref, University of Illinois at Urbana-Champaign

My research focuses on probing superconducting quantum bits or qubits with acoustic radiation in the form of surface acoustic waves (SAWs). This allows the investigation of sound interacting with artificial atoms on a quantum mechanical level, i.e. quantum acoustics with traveling phonons. We can then reproduce findings from quantum optics with sound taking over the role of light, highlighting the similarities between phonons and photons.

Thursday, March 8, 2018 4:00 pm - 4:00 pm EST (GMT -05:00)

Deterministic Quantum Dense Coding Networks

Titas Chanda, Harish-Chandra Research Institute

Emergence of quantum information science has led to a paradigm shift in communication systems. In the past couple of decades, quantum information processing tasks like quantum cryptography, dense coding, quantum teleportation etc. have been shown to have advantages over their classical counterparts and have also been successfully implemented in laboratories.

Tuesday, March 13, 2018 2:00 pm - 2:00 pm EDT (GMT -04:00)

Solution to a Long-Standing Controversy in Paul-Trap Physics

Angus Kan, Wesleyan University

The study of charged particles dynamics in a Paul trap is the foundation of its wide-ranging applications, including analyzing proteins, determining isotope ratios, and constructing a quantum computer. However, in the simplest case of two-particle dynamics, there remains a controversy on whether a two-ion planar crystal undergoes an order-to-chaos transition at a critical, well-defined trap parameter value. Via analytical and numerical investigation of the Mathieu-Coulomb equations, I show that the transition does not exist.

Monday, March 26, 2018 4:00 pm - 4:00 pm EDT (GMT -04:00)

All no-signalling theories are local-realistic

Gilles Brassard, Université de Montréal

It is generally believed that experimental violations of Bell's inequalities (especially the recent so-called loophole-free experiments) provide evidence that quantum theory cannot be both local and realistic. We demonstrate to the contrary that all reversible-dynamics no-signalling operational theories (including unitary quantum theory) can be given a local-realistic interpretation.