University COVID-19 update

Visit the University's Coronavirus Information website for more information.

The Waterloo Institute for Nanotechnology main office (QNC 3606) is closed until further notice. If you are a student trying to pick up or return a lab/office key, please email asomel@uwaterloo.ca for assistance. All other inquires can be directed to win-office@uwaterloo.ca. For emergencies, contact Campus Police.

AI being used to develop drugs even faster and cheaper

Monday, December 10, 2018

Portrait of Scott HopkinsThe use of artificial intelligence (AI) is making it possible to discover new drugs faster, cheaper and more efficiently.

Waterloo chemists have introduced AI to interpret the results acquired by the differential mobility spectrometry (DMS) technique to predict drug properties. This could reduce the time between concept and coming to market of new drugs by years and decrease production costs by $100s of million.

DMS is a technique that analyzes molecules based on their response to an electrical field and condensation-evaporation cycles. In the past, chemists were typically restricted to assessing the properties of a single class of drug at a time with this technique, a limitation eliminated by the introduction of AI into the process.

“AI has reduced the analysis time and made the process general and more efficient,” said Scott Hopkins, WIN member and a professor of chemistry at Waterloo. “Before, when we were only using DMS, we could study a single class of drug at a time to look for property correlations, but with the introduction of machine learning we can examine numerous types of drugs simultaneously. This really improves our accuracy and increases the rate of screening.”

In addition to previously being confined to looking at a single class of drug at a time, researchers were also restricted to assessing drugs that were similar to others that they had previously studied and logged in their database. With the introduction of machine learning, the researchers can now investigate all types of drugs simultaneously, even if they hadn’t previously investigated direct analogues. This new methodology greatly improves testing accuracy while reducing the time required in the lab.

“The other thing that we can potentially do with this technique is to go back through drug libraries to look for things that didn't make the cut in the 1970s and 1980s but might actually be good drugs,” said Hopkins. “Back then, testing techniques weren't as good. Because we’re now able to test more quickly and accurately, we can re-screen these old drug candidates.”

“This doesn’t just stop at drug molecules; we can pretty much study any molecular system this way. For example, the nuclear energy sector might be interested in properties measurements over a range of conditions, and there are potential applications for the development of sensors and new materials.”

Hopkins is the co-founder and Chief Scientific Officer of WaterMine Innovation Inc. He's also a member of the Waterloo Institute for Nanotechology and Waterloo Artificial Intelligence Institute.

The study was recently published in the journal Nature Communications.


Related reading:

In the media:

  1. 2020 (22)
    1. July (2)
    2. June (6)
    3. May (1)
    4. April (5)
    5. March (1)
    6. February (3)
    7. January (4)
  2. 2019 (28)
    1. December (2)
    2. November (6)
    3. October (4)
    4. September (4)
    5. July (1)
    6. May (4)
    7. March (3)
    8. February (3)
    9. January (1)
  3. 2018 (14)
    1. December (5)
    2. November (1)
    3. October (2)
    4. September (2)
    5. June (1)
    6. March (2)
    7. February (1)
  4. 2017 (1)
  5. 2016 (4)
  6. 2015 (5)
  7. 2014 (7)
  8. 2013 (4)
  9. 2012 (8)
  10. 2011 (11)
  11. 2010 (12)
  12. 2009 (2)