**Contact Info**

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

Phone: 519-888-4567, ext. 32700

Fax: 519-746-4319

PDF files require Adobe Acrobat Reader

Visit our COVID-19 information website to learn how Warriors protect Warriors.

Please note: The University of Waterloo is closed for all events until further notice.

Tuesday, January 8, 2019 — 10:00 AM EST

MC 5417

Humeyra Kiyak | Applied Math, University of Waterloo

Qualitative Properties of Hybrid Singular Systems

A singular system model is mathematically formulated as a set of coupled differential and algebraic equations. Singular systems, also referred to as descriptor or differential algebraic systems, have extensive applications in power, economic, and biological systems. The main purpose of this thesis is to address the problems of stability and stabilization for singular hybrid systems with or without time delay.

Firstly, some sufficient conditions on the exponential stability property of both continuous and discrete impulsive switched singular systems with time delay (ISSSD) are proposed. The stability results for both the continuous and the discrete system are investigated by first using the multiple Lyapunov functions along with the average-dwell time (ADT) switching signal to organize the jumps among the system modes and then resorting the Halanay Lemma.

Secondly, an optimal feedback control only for continuous ISSSD is designed to guarantee the exponential stability of the closed-loop system. Moreover, a Luenberger-type observer is designed to estimate the system states such that the corresponding closed-loop error system is exponentially stable. Similarly, we have used the multiple Lyapunov functions approach with the ADT switching signal and the Halanay Lemma.

Thirdly, the problem of designing a sliding mode control (SMC) for singular systems subject to impulsive effects is addressed in continuous and discrete contexts. The main objective is to design an SMC law such that the closed-loop system achieves stability. Designing a sliding surface, analyzing a reaching condition and designing an SMC law are investigated throughly. In addition, the discrete SMC law is slightly modified to eliminate chattering.

Lastly, mean square admissibility for singular switched systems with stochastic noise in continuous and discrete cases is investigated. Sufficient conditions that guarantee mean square admissibility are developed by using linear matrix inequalities (LMIs).

**Contact Info**

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

Phone: 519-888-4567, ext. 32700

Fax: 519-746-4319

PDF files require Adobe Acrobat Reader

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land promised to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office.