Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
For Zoom Link please contact ddelreyfernandez@uwaterloo.ca
Romit Maulik, Computational Scientist in the Mathematics and Computer Division at Argonne National Laboratory (Research Assistant Professor in the Department of Applied Mathematics at the Illinois Institute of Technology)
Reduced-order modeling of high-dimensional systems using scientific machine learning
In this talk, I will present recent research that builds fast and accurate reduced-order models (ROMs) for various high-dimensional systems. These systems may be steady-state, where the ROM is tasked with making predictions given varying parametric inputs, or they may be dynamic where the ROM must make accurate forecasts in time, given parameters and/or varying initial and boundary conditions. In both endeavors, we will outline the development of scientific machine learning strategies, based on deep learning-based compression and forecasting, to dramatically improve accuracy and time-to-solution for extended computational campaigns. Furthermore, in addition to canonical experiments, our algorithms will be demonstrated for several real-world applications of strategic importance. Some examples are building ROMs for geophysical forecasting from ship and satellite observation data and wind-turbine wake predictions from meteorological and LIDAR measurements.
Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.