**Contact Info**

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

Phone: 519-888-4567, ext. 32700

Fax: 519-746-4319

PDF files require Adobe Acrobat Reader

**Returning to in-person experiences in February:** Visit the COVID-19 website for more information.

Monday, January 15, 2018 — 1:30 PM EST

MC 5417

Guillaume Verdon-Akzam | Applied Math, University of Waterloo

Near-Term Quantum Algorithms for Simulation and Machine Learning

Some of the most promising applications of quantum computing in the near-term, pre-fault-tolerance era of quantum computation are for the simulation of quantum systems and for quantum-accelerated machine learning. I begin this talk by reviewing near-term approaches/algorithms for quantum computation, including quantum-classical hybrid variational algorithms, and universal adiabatic quantum computation. A common feature of these approaches is that they are Hamiltonian-based, i.e. the quantum computation is phrased as a ground state problem of a certain Hamiltonian. I provide an overview of a few Hamiltonian-based/adiabatic constructions for universal quantum computation, and hint towards possible future work in this area. Following this, I propose a few paradigms I have constructed for Hamiltonian-based quantum-enhanced machine learning, i.e. quantum algorithms to learn patterns in classical data. I also outline a non-Hamiltonian-based approach to quantum feedforward neural networks and quantum backpropagation. Finally, I suggest possible links between universal adiabatic Hamiltonian constructions and quantum-data machine learning.

**Contact Info**

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

Phone: 519-888-4567, ext. 32700

Fax: 519-746-4319

PDF files require Adobe Acrobat Reader

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office.