Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
MC 5417
Guillaume Verdon-Akzam | Applied Math, University of Waterloo
Near-Term Quantum Algorithms for Simulation and Machine Learning
Some of the most promising applications of quantum computing in the near-term, pre-fault-tolerance era of quantum computation are for the simulation of quantum systems and for quantum-accelerated machine learning. I begin this talk by reviewing near-term approaches/algorithms for quantum computation, including quantum-classical hybrid variational algorithms, and universal adiabatic quantum computation. A common feature of these approaches is that they are Hamiltonian-based, i.e. the quantum computation is phrased as a ground state problem of a certain Hamiltonian. I provide an overview of a few Hamiltonian-based/adiabatic constructions for universal quantum computation, and hint towards possible future work in this area. Following this, I propose a few paradigms I have constructed for Hamiltonian-based quantum-enhanced machine learning, i.e. quantum algorithms to learn patterns in classical data. I also outline a non-Hamiltonian-based approach to quantum feedforward neural networks and quantum backpropagation. Finally, I suggest possible links between universal adiabatic Hamiltonian constructions and quantum-data machine learning.
Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Office of Indigenous Relations.