Waterloo researchers study coronavirus structure to help design drugs for current and future pandemics

Thursday, June 10, 2021

Professors Aravindhan Ganesan (Pharmacy) and Subha Kalyaanamoorthy (Chemistry) use drug design methods to target the molecular machinery that supports COVID-19 replication.

To effectively design treatment for a virus, scientists must first understand its structure and dynamics at the molecular level. COVID-19, which is caused by the SARS-CoV-2 virus, is no exception, and has been the object of intense study by scientists around the world over the last year.

SARS-CoV-2 Mpro complexe structure.
Aravindhan Ganesan, a pharmacy professor, and Subha Kalyaanamoorthy, a chemistry professor, are two of these scientists. The husband-and-wife team are new to the University of Waterloo, joining just months before COVID-19 sent students and faculty alike to remote learning and working. In a recent publication, they showed how drug design methods can be refined to target the main protease, or Mpro, a part SARS-CoV-2 which contributes to viral replication.

Aravindhan Ganesan working at a computer.
“Despite working from home, we knew we’d be able to conduct research to support the global fight against COVID-19,” says Ganesan. “We identified important physical aspects of the SARS-CoV-2 Mpro structure so that we’d have a better idea of how to design effective drugs to treat the disease.”

Since their research relies on computer analysis, both professors adapted their experiments to keep them running outside the lab, at home. Ganesan specializes in molecular modelling and simulation, and Kalyaanamoorthy is an expert in bioinformatics and drug design.

Together, they ventured on examining more than hundred structures of fragment-bound SARS-CoV-2 Mpro complexes.

Subha Kalyaanamoorthy at her computer in her home office.
“From previous research, we know that Mpro plays a critical role in how the virus replicates itself and spreads,” says Kalyaanamoorthy. “Targeting it with drug therapy might enable us to stop the virus from replicating. Mpro is also a druggable target, meaning it has pockets that can easily be targeted by small molecule drugs. This is critical: there are other important parts of the virus that could be studied, but if they can’t be effectively targeted by medication, there’s less reason to conduct further study.”

The researchers hope that understanding Mpro’s physical properties will help in responding to future pandemics as well. In 2003, Canada was hit with the SARS virus. This virus, SARS-CoV-1, was a precursor to the SARS-CoV-2 present today.

“We learned a lot from the SARS outbreak, and although there are differences between SARS-CoV-1 and SARS-CoV-2, we noticed that the Mpro – the main protease – is highly conserved across the known coronaviruses,” says Ganesan. “The hope is that by understanding Mpro, we identify a viable target for treatments not just of COVID-19 but of future viruses in the SARS-CoV family.”

The team had identified a viable target for treatment. Next, they had to identify a site on the Mpro that medication can attach to.. To find this ideal site, Ganesan and Kalyaanamoorthy’s teams, which included undergraduate students, performed robust structural analyses using molecular simulation on Mpro. They identified promising areas on the SARS-CoV-2 Mpro for enhancing the stability and affinity of the drugs binding to it.