PhD Defence • Algorithms and Complexity • DNA Computing: Modelling in Formal Languages and Combinatorics on Words, and Complexity Estimation

Wednesday, December 7, 2022 1:00 pm - 1:00 pm EST (GMT -05:00)

Please note: This PhD defence will take place online.

Zihao Wang, PhD candidate
David R. Cheriton School of Computer Science

Supervisor: Professor Lila Kari

DNA computing, an essential area of unconventional computing research, encodes problems using DNA molecules and solves them using biological processes. This thesis contributes to the theoretical research in DNA computing by modelling biological processes as computations and by studying formal language and combinatorics on words concepts motivated by DNA processes. It also contributes to the experimental research of DNA computing by a scaling comparison between DNA computing and other models of computation.

First, for theoretical DNA computing research, we propose a new word operation inspired by a DNA wet lab protocol called cross-pairing polymerase chain reaction (XPCR). We define and study a word operation called word blending that models and generalizes an unexpected outcome of XPCR. The input words are uwx and ywv that share a non-empty overlap part w, and the output is the word uwv. Closure properties of the Chomsky families of languages under this operation and its iterated version, the existence of a solution to equations involving this operation, and its state complexity are studied. To follow the XPCR experimental requirement closely, a new word operation called conjugate word blending is defined, where we require the subwords x and y to be identical. Closure properties of the Chomsky families of languages under this operation and the XPCR experiments that motivate and implement it are presented.

Second, we generalize the sequence of Fibonacci words inspired by biological concepts on DNA. The sequence of Fibonacci words is an infinite sequence of words obtained from two initial letters f(1) = a and f(2)= b, by the recursive definition f(n+2) = f(n+1) * f(n), for all positive integers n, where * denotes word concatenation. After we propose a unified terminology for different types of Fibonacci words and corresponding results in the extensive literature on the topic, we define and explore involutive Fibonacci words motivated by ideas stemming from theoretical studies of DNA computing. The relationship between different involutive Fibonacci words and their borderedness and primitivity are studied.

Third, we analyze the practicability of DNA computing experiments since DNA computing and other unconventional computing methods that solve computationally challenging problems often have the limitation that the space of potential solutions grows exponentially with their sizes. For such problems, DNA computing algorithms may achieve a linear time complexity with an exponential space complexity as a trade-off. Using the subset sum problem as the benchmark problem, we present a scaling comparison of the DNA computing (DNA-C) approach with the network biocomputing (NB-C) and the electronic computing (E-C) approaches, where the volume, computing time, and energy required, relative to the input size, are compared. Our analysis shows that E-C uses a tiny volume compared to that required by DNA-C and NB-C, at the cost of the E-C computing time being outperformed first by DNA-C and then by NB-C. In addition, NB-C appears to be more energy efficient than DNA-C for some input sets, and E-C is always an order of magnitude less energy efficient than DNA-C.