Please note: This PhD seminar will be given online.
Chang
Ge,
PhD
candidate
David
R.
Cheriton
School
of
Computer
Science
Supervisor: Professor Ihab Ilyas
Organizations are increasingly relying on data to support decisions. When data contains private and sensitive information, the data owner often desires to publish a synthetic database instance that is similarly useful as the true data, while ensuring the privacy of individual data records. Existing differentially private data synthesis methods aim to generate useful data based on applications, but they fail in keeping one of the most fundamental data properties of the structured data — the underlying correlations and dependencies among tuples and attributes (i.e., the structure of the data). This structure is often expressed as integrity and schema constraints, or with a probabilistic generative process. As a result, the synthesized data is not useful for any downstream tasks that require this structure to be preserved.
In this talk, I will present Kamino, a data synthesis system to ensure differential privacy and to preserve the structure and correlations present in the original dataset. Kamino takes as input of a database instance, along with its schema (including integrity constraints), and produces a synthetic database instance with differential privacy and structure preservation guarantees. We empirically show that while preserving the structure of the data, Kamino achieves comparable and even better usefulness in applications of training classification models and answering marginal queries than the state-of-the-art methods of differentially private data synthesis.
This work is to appear in VLDB 2021.
To join this PhD seminar on Zoom, please go to https://us02web.zoom.us/j/83326411204?pwd=Z3dNVUxIK01PMXY3MTlXaHNVckJqdz09.