University of Waterloo COVID-19 update

The University of Waterloo is constantly updating its most frequently asked questions.

Questions about buildings and services? Please visit the list of modified services.

Please note: The University of Waterloo is closed for all events until further notice.

Seminar • Algorithms and Complexity — Drawing Planar Graphs with Few Geometric Primitives: Algorithms and EvaluationExport this event to calendar

Wednesday, July 25, 2018 — 1:30 PM EDT

Philipp Kindermann, Postdoctoral Fellow
David R. Cheriton School of Computer Science

The visual complexity of a graph drawing is defined as the number of geometric objects needed to represent all its edges. In particular, one object may represent multiple edges, e.g., one needs only one line segment to draw two collinear incident edges. 

We investigate whether drawings with few segments have a better aesthetic appeal and help the user to assess the underlying graph. We develop algorithms for drawing planar graphs with few segments. Then we design a user study that investigates two different graph types (trees and sparse graphs), three different layout algorithms for trees, and two different layout algorithms for sparse graphs. We asked the participants to give an aesthetic ranking on the layouts and to perform a furthest-pair or shortest-path task on the drawings.

Location 
DC - William G. Davis Computer Research Centre
1304
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

S M T W T F S
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
  1. 2020 (75)
    1. May (3)
    2. April (8)
    3. March (17)
    4. February (25)
    5. January (22)
  2. 2019 (255)
    1. December (21)
    2. November (25)
    3. October (16)
    4. September (20)
    5. August (18)
    6. July (12)
    7. June (23)
    8. May (23)
    9. April (32)
    10. March (25)
    11. February (16)
    12. January (24)
  3. 2018 (220)
  4. 2017 (36)
  5. 2016 (21)
  6. 2015 (36)
  7. 2014 (33)
  8. 2013 (23)
  9. 2012 (4)
  10. 2011 (1)
  11. 2010 (1)
  12. 2009 (1)
  13. 2008 (1)