Professor Florian Kerschbaum has been awarded $2 million through the Ontario Research Fund to develop innovative data science and machine learning techniques aimed at safeguarding Ontario’s financial technology and manufacturing sectors from inadvertent data leaks. The project, led by Professor Kerschbaum as principal investigator and Professor N. Asokan as co-principal investigator, will enhance data security in these critical industries.
“By investing in cutting-edge research, we are safeguarding Ontario’s position at the forefront of innovation that continues to be competitive on a global scale and has the ability to attract the best and brightest talent to our province,” said Jill Dunlop, Minister of Colleges and Universities. “This will help ensure the social and economic opportunities that result from discoveries made in Ontario benefit Ontarians and the Ontario economy.”
ORF contributes up to one-third of the total project funding, with the remaining funds provided by private sector and institutional partners. Professor Kerschbaum’s research is one of four ORF-supported projects, totaling nearly $8 million, allocated to Waterloo researchers.
“At RBC, we value the privacy and security of our clients above all and throughout the years, we’ve had the opportunity to develop and help support initiatives that enhance and innovate on what’s possible in these critical areas of cyber safety,” said Eddy Ortiz, VP, Solution Acceleration & Innovation at RBC (inset on right). “As a result, we’ve been able to successfully launch numerous privacy-preserving patents, publications and products, including our virtual clean room, Arxis. We are also proud to work and collaborate with some of the leading laboratories in the world, including University of Waterloo, in the area of federated learning.”
About the research
Professor Kerschbaum’s research will address the growing demand for data collection in the digital economy while ensuring robust data privacy protections. Protecting data privacy is essential to prevent accidental leaks of private information. Although data science involves intentionally releasing some information, privacy-preserving techniques — such as those provided by cryptography and statistical guarantees — can limit what can be inferred about private data. As such, systems designed for privacy-preserving data science must balance intentional leakage against the risk of unintentional leakage, while being computationally efficient.
“Our project aims to address this trade-off in utility, privacy and efficiency in private computation by taking a holistic approach to data science,” said Professor Kerschbaum. “The goal is to achieve better trade-offs that benefit Ontario’s fintech and manufacturing industries by supporting their business goals while preserving privacy for both their customers and businesses. As the project has many components, it will also result in training dozens of students at both undergraduate and graduate levels over five years, providing them with the knowledge and expertise for careers in privacy-preserving data science.”