Energy is present everywhere in the universe, from the tiniest particles to the vastness of space. According to quantum mechanics, vacuum states like outer space are not actually empty, because when observed at microscopic scales, there are spontaneous energy fluctuations. These can be loosely interpreted as a sea of particles ‘popping in and out of existence’ for short times, and results in regions of positive and negative energy densities. Overall, these fluctuations keep the vacuum in its lowest possible energy state, known as the zero-point energy.
However, it has been theorized that under very specific conditions, quantum information processing and quantum thermodynamics tools might be useful for localized energy extraction from the zero-point energy of a quantum vacuum. Researchers at the Institute for Quantum Computing (IQC) have implemented the first experiment in which quantum entanglement is used as a resource to activate the vacuum zero-point energy. The team included Dr. Raymond Laflamme, IQC faculty member and professor in Waterloo’s Department of Physics and Astronomy, and Dr. Eduardo Martín-Martínez, IQC associate and professor in the Department of Applied Math, as well as Dr. Nayeli Rodríguez-Briones and Dr. Hemant Katiyar, both recent graduates from IQC and the Department of Physics and Astronomy, now working at University of California, Berkeley and IonQ Canada, respectively.
Read more on the Institute for Quantum Computing website.